Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Sep 1;105(3):1417–1424. doi: 10.1083/jcb.105.3.1417

Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors

PMCID: PMC2114789  PMID: 3654760

Abstract

The synthesis of membrane skeletal proteins in avian nucleated red cells has been the subject of extensive investigation, whereas little is known about skeletal protein synthesis in bone marrow erythroblasts and peripheral blood reticulocytes in mammals. To address this question, we have isolated nucleated red cell precursors and reticulocytes from spleens and from the peripheral blood, respectively, of rats with phenylhydrazine-induced hemolytic anemia and pulse-labeled them with [35S]methionine. Pulse-labeling of nucleated red cell precursors shows that the newly synthesized alpha- and beta-spectrins are present in the cytosol, with a severalfold excess of alpha-spectrin over beta-spectrin. However, in the membrane-skeletal fraction, newly synthesized alpha- and beta-spectrins are assembled in stoichiometric amounts, suggesting that the association of alpha-spectrin with the membrane skeleton may be rate-limited by the amount of beta-spectrin synthesized, as has been shown recently in avian erythroid cells (Blikstad, I., W. J. Nelson, R. T. Moon, and E. Lazarides, 1983. Cell, 32:1081-1091). Pulse-chase experiments in the rat nucleated red cell precursors show that the newly synthesized alpha- and beta-spectrin of the cytosol turn over coordinately and extremely rapidly. In contrast, in the membrane-skeletal fraction, the newly synthesized polypeptides of spectrin are stable. In contrast to nucleated erythroid cells, in reticulocytes the synthesis of alpha- and beta-spectrins is markedly diminished compared with the synthesis and assembly of proteins comigrating with bands 2.1 and 4.1 on SDS gels. Thus, in nucleated red cell precursors, the newly synthesized spectrin may be attached to the plasma membrane before proteins 2.1 and 4.1 are completely synthesized and incorporated in the membrane.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. A., Lovrien R. E. Glycophorin is linked by band 4.1 protein to the human erythrocyte membrane skeleton. Nature. 1984 Feb 16;307(5952):655–658. doi: 10.1038/307655a0. [DOI] [PubMed] [Google Scholar]
  2. Bennett V., Stenbuck P. J. Association between ankyrin and the cytoplasmic domain of band 3 isolated from the human erythrocyte membrane. J Biol Chem. 1980 Jul 10;255(13):6424–6432. [PubMed] [Google Scholar]
  3. Blikstad I., Nelson W. J., Moon R. T., Lazarides E. Synthesis and assembly of spectrin during avian erythropoiesis: stoichiometric assembly but unequal synthesis of alpha and beta spectrin. Cell. 1983 Apr;32(4):1081–1091. doi: 10.1016/0092-8674(83)90292-1. [DOI] [PubMed] [Google Scholar]
  4. Bodine D. M., 4th, Birkenmeier C. S., Barker J. E. Spectrin deficient inherited hemolytic anemias in the mouse: characterization by spectrin synthesis and mRNA activity in reticulocytes. Cell. 1984 Jul;37(3):721–729. doi: 10.1016/0092-8674(84)90408-2. [DOI] [PubMed] [Google Scholar]
  5. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  6. Chan L. L. Changes in the composition of plasma membrane proteins during differentiation of embryonic chick erythroid cell. Proc Natl Acad Sci U S A. 1977 Mar;74(3):1062–1066. doi: 10.1073/pnas.74.3.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chang H., Langer P. J., Lodish H. F. Asynchronous synthesis of erythrocyte membrane proteins. Proc Natl Acad Sci U S A. 1976 Sep;73(9):3206–3210. doi: 10.1073/pnas.73.9.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  9. Geiduschek J. B., Singer S. J. Molecular changes in the membranes of mouse erythroid cells accompanying differentiation. Cell. 1979 Jan;16(1):149–163. doi: 10.1016/0092-8674(79)90196-x. [DOI] [PubMed] [Google Scholar]
  10. Hanash S. M., Rucknagel D. L. Proteolytic activity in erythrocyte precursors. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3427–3431. doi: 10.1073/pnas.75.7.3427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harding C., Heuser J., Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983 Aug;97(2):329–339. doi: 10.1083/jcb.97.2.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hargreaves W. R., Giedd K. N., Verkleij A., Branton D. Reassociation of ankyrin with band 3 in erythrocyte membranes and in lipid vesicles. J Biol Chem. 1980 Dec 25;255(24):11965–11972. [PubMed] [Google Scholar]
  13. Koch P. A., Gartrell J. E., Jr, Gardner F. H., Carter J. R., Jr Biogenesis of erythrocyte membrane proteins. In vivo studies in anemic rabbits. Biochim Biophys Acta. 1975 Apr 21;389(1):162–176. doi: 10.1016/0005-2736(75)90394-6. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lingappa V. R., Lingappa J. R., Prasad R., Ebner K. E., Blobel G. Coupled cell-free synthesis, segregation, and core glycosylation of a secretory protein. Proc Natl Acad Sci U S A. 1978 May;75(5):2338–2342. doi: 10.1073/pnas.75.5.2338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moon R. T., Lazarides E. Biogenesis of the avian erythroid membrane skeleton: receptor-mediated assembly and stabilization of ankyrin (goblin) and spectrin. J Cell Biol. 1984 May;98(5):1899–1904. doi: 10.1083/jcb.98.5.1899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pfeffer S. R., Huima T., Redman C. M. Biosynthesis of spectrin and its assembly into the cytoskeletal system of Friend erythroleukemia cells. J Cell Biol. 1986 Jul;103(1):103–113. doi: 10.1083/jcb.103.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sabban E. L., Sabatini D. D., Marchesi V. T., Adesnik M. Biosynthesis of erythrocyte membrane protein band 3 in DMSO-induced Friend erythroleukemia cells. J Cell Physiol. 1980 Aug;104(2):261–268. doi: 10.1002/jcp.1041040217. [DOI] [PubMed] [Google Scholar]
  21. Staufenbiel M., Lazarides E. Assembly of protein 4.1 during chicken erythroid differentiation. J Cell Biol. 1986 Apr;102(4):1157–1163. doi: 10.1083/jcb.102.4.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES