Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Sep 1;105(3):1443–1454. doi: 10.1083/jcb.105.3.1443

Fibronectin-mediated adhesion of fibroblasts: inhibition by dermatan sulfate proteoglycan and evidence for a cryptic glycosaminoglycan- binding domain

PMCID: PMC2114804  PMID: 2958485

Abstract

Dermatan sulfate proteoglycans (DS-PGs) isolated from bovine articular cartilage have been examined for their effects on the adhesive responses of BALB/c 3T3 cells and bovine dermal fibroblasts on plasma fibronectin (pFN) and/or type I collagen matrices, and compared to the effects of the chondroitin sulfate/keratan sulfate proteoglycan monomers (CS/KS-PGs) from cartilage. DS-PGs inhibited the attachment and spreading of 3T3 cells on pFN-coated tissue culture substrata much more effectively than the cartilage CS/KS-PGs reported previously; in contrast, dermal fibroblasts were much less sensitive to either proteoglycan class unless they were pretreated with cycloheximide. Both cell types failed to adhere to substrata coated only with the proteoglycans; binding of the proteoglycans to various substrata has also been quantitated. While a strong inhibitory effect was obtained with the native intact DS-PGs, little inhibitory effect was obtained with isolated DS chains (liberated by alkaline-borohydride cleavage) or with core protein preparations (liberated by chondroitinase ABC digestion). In marked contrast, DS-PGs did not inhibit attachment or spreading responses of either 3T3 or dermal fibroblasts on type I collagen-coated substrata when the collagen was absorbed with pFN alone, DS-PGs alone, or the two in combination. These results support evidence for (a) collagen-dependent, fibronectin-independent mechanisms of adhesion of fibroblasts, and (b) different sites on the collagen fibrils where DS-PGs bind and where cell surface "receptors" for collagen bind. Experiments were developed to determine the mechanism(s) of inhibition. All evidence indicated that the mechanism using the intact pFN molecule involved the binding of the DS-PGs to the glycosaminoglycan (GAG)-binding sites of substratum-bound pFN, thereby inhibiting the interaction of the fibronectin with receptors on the cell surface. This was supported by affinity chromatography studies demonstrating that DS-PGs bind completely and effectively to pFN- Sepharose columns whereas only a subset of the cartilage CS/KS-PG binds weakly to these columns. In contrast, when a 120-kD chymotrypsin- generated cell-binding fragment of pFN (CBF which has no detectable GAG- binding activity as a soluble ligand) was tested in adhesion assays, DS- PGs inhibited 3T3 adherence on CBF more effectively than on intact pFN. A variety of experiments indicated that the mechanism of this inhibition also involved the binding of DS-PGs to only substratum-bound CBF due to the presence of a cryptic GAG-binding domain not observed in the soluble CBF.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (3.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aplin J. D., Hughes R. C., Jaffe C. L., Sharon N. Reversible cross-linking of cellular components of adherent fibroblasts to fibronectin and lectin-coated substrata. Exp Cell Res. 1981 Aug;134(2):488–494. doi: 10.1016/0014-4827(81)90453-5. [DOI] [PubMed] [Google Scholar]
  2. Bell E., Ivarsson B., Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1274–1278. doi: 10.1073/pnas.76.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beyth R. J., Culp L. A. Complementary adhesive responses of human skin fibroblasts to the cell-binding domain of fibronectin and the heparan sulfate-binding protein, platelet factor-4. Exp Cell Res. 1984 Dec;155(2):537–548. doi: 10.1016/0014-4827(84)90213-1. [DOI] [PubMed] [Google Scholar]
  4. Borsi L., Castellani P., Balza E., Siri A., Pellecchia C., De Scalzi F., Zardi L. Large-scale procedure for the purification of fibronectin domains. Anal Biochem. 1986 Jun;155(2):335–345. doi: 10.1016/0003-2697(86)90443-4. [DOI] [PubMed] [Google Scholar]
  5. Brennan M. J., Oldberg A., Hayman E. G., Ruoslahti E. Effect of a proteoglycan produced by rat tumor cells on their adhesion to fibronectin-collagen substrata. Cancer Res. 1983 Sep;43(9):4302–4307. [PubMed] [Google Scholar]
  6. Brown P. J., Juliano R. L. Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell-surface glycoprotein. Science. 1985 Jun 21;228(4706):1448–1451. doi: 10.1126/science.4012302. [DOI] [PubMed] [Google Scholar]
  7. Castellani P., Siri A., Rosellini C., Infusini E., Borsi L., Zardi L. Transformed human cells release different fibronectin variants than do normal cells. J Cell Biol. 1986 Nov;103(5):1671–1677. doi: 10.1083/jcb.103.5.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen K., Wight T. N. Proteoglycans in arterial smooth muscle cell cultures: an ultrastructural histochemical analysis. J Histochem Cytochem. 1984 Apr;32(4):347–357. doi: 10.1177/32.4.6200530. [DOI] [PubMed] [Google Scholar]
  9. Chen W. T., Hasegawa E., Hasegawa T., Weinstock C., Yamada K. M. Development of cell surface linkage complexes in cultured fibroblasts. J Cell Biol. 1985 Apr;100(4):1103–1114. doi: 10.1083/jcb.100.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen W. T., Olden K., Bernard B. A., Chu F. F. Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites. J Cell Biol. 1984 Apr;98(4):1546–1555. doi: 10.1083/jcb.98.4.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Culp A., Bensusan H. Search for collagen in substrate adhesion site of two murine cell lines. Nature. 1978 Jun 22;273(5664):680–682. doi: 10.1038/273680a0. [DOI] [PubMed] [Google Scholar]
  12. Culp L. A., Laterra J., Lark M. W., Beyth R. J., Tobey S. L. Heparan sulphate proteoglycan as mediator of some adhesive responses and cytoskeletal reorganization of cells on fibronectin matrices: independent versus cooperative functions. Ciba Found Symp. 1986;124:158–183. doi: 10.1002/9780470513385.ch10. [DOI] [PubMed] [Google Scholar]
  13. Culp L. A., Murray B. A., Rollins B. J. Fibronectin and proteoglycans as determinants of cell-substratum adhesion. J Supramol Struct. 1979;11(3):401–427. doi: 10.1002/jss.400110314. [DOI] [PubMed] [Google Scholar]
  14. Culp L. A., Rollins B. J., Buniel J., Hitri S. Two functionally distinct pools of glycosaminoglycan in the substrate adhesion site of murine cells. J Cell Biol. 1978 Dec;79(3):788–801. doi: 10.1083/jcb.79.3.788. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cöster L., Fransson L. A. Isolation and characterization of dermatan sulphate proteoglycans from bovine sclera. Biochem J. 1981 Jan 1;193(1):143–153. doi: 10.1042/bj1930143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Cöster L., Fransson L. A., Sheehan J., Nieduszynski I. A., Phelps C. F. Self-association of dermatan sulphate proteoglycans from bovine sclera. Biochem J. 1981 Aug 1;197(2):483–490. doi: 10.1042/bj1970483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fisher L. W., Termine J. D., Dejter S. W., Jr, Whitson S. W., Yanagishita M., Kimura J. H., Hascall V. C., Kleinman H. K., Hassell J. R., Nilsson B. Proteoglycans of developing bone. J Biol Chem. 1983 May 25;258(10):6588–6594. [PubMed] [Google Scholar]
  18. Franzén A., Heinegård D. Characterization of proteoglycans from the calcified matrix of bovine bone. Biochem J. 1984 Nov 15;224(1):59–66. doi: 10.1042/bj2240059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Franzén A., Heinegård D. Extraction and purification of proteoglycans from mature bovine bone. Biochem J. 1984 Nov 15;224(1):47–58. doi: 10.1042/bj2240047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gallagher J. T., Gasiunas N., Schor S. L. Specific association of iduronic acid-rich dermatan sulphate with the extracellular matrix of human skin fibroblasts cultured on collagen gels. Biochem J. 1983 Oct 1;215(1):107–116. doi: 10.1042/bj2150107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Giancotti F. G., Tarone G., Knudsen K., Damsky C., Comoglio P. M. Cleavage of a 135 kD cell surface glycoprotein correlates with loss of fibroblast adhesion to fibronectin. Exp Cell Res. 1985 Jan;156(1):182–190. doi: 10.1016/0014-4827(85)90272-1. [DOI] [PubMed] [Google Scholar]
  22. Glössl J., Hoppe W., Kresse H. Post-translational phosphorylation of proteodermatan sulfate. J Biol Chem. 1986 Feb 5;261(4):1920–1923. [PubMed] [Google Scholar]
  23. Glössl J., Schubert-Prinz R., Gregory J. D., Damle S. P., von Figura K., Kresse H. Receptor-mediated endocytosis of proteoglycans by human fibroblasts involves recognition of the protein core. Biochem J. 1983 Nov 1;215(2):295–301. doi: 10.1042/bj2150295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Gold L. I., Frangione B., Pearlstein E. Biochemical and immunological characterization of three binding sites on human plasma fibronectin with different affinities for heparin. Biochemistry. 1983 Aug 16;22(17):4113–4119. doi: 10.1021/bi00286a019. [DOI] [PubMed] [Google Scholar]
  25. Grinnell F., Feld M. K. Initial adhesion of human fibroblasts in serum-free medium: possible role of secreted fibronectin. Cell. 1979 May;17(1):117–129. doi: 10.1016/0092-8674(79)90300-3. [DOI] [PubMed] [Google Scholar]
  26. Habuchi H., Kimata K., Suzuki S. Changes in proteoglycan composition during development of rat skin. The occurrence in fetal skin of a chondroitin sulfate proteoglycan with high turnover rate. J Biol Chem. 1986 Jan 25;261(3):1031–1040. [PubMed] [Google Scholar]
  27. Harper P. A., Juliano R. L. Two distinct mechanisms of fibroblast adhesion. Nature. 1981 Mar 12;290(5802):136–138. doi: 10.1038/290136a0. [DOI] [PubMed] [Google Scholar]
  28. Hassell J. R., Kimura J. H., Hascall V. C. Proteoglycan core protein families. Annu Rev Biochem. 1986;55:539–567. doi: 10.1146/annurev.bi.55.070186.002543. [DOI] [PubMed] [Google Scholar]
  29. Heinegård D., Björne-Persson A., Cöster L., Franzén A., Gardell S., Malmström A., Paulsson M., Sandfalk R., Vogel K. The core proteins of large and small interstitial proteoglycans from various connective tissues form distinct subgroups. Biochem J. 1985 Aug 15;230(1):181–194. doi: 10.1042/bj2300181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Izzard C. S., Radinsky R., Culp L. A. Substratum contacts and cytoskeletal reorganization of BALB/c 3T3 cells on a cell-binding fragment and heparin-binding fragments of plasma fibronectin. Exp Cell Res. 1986 Aug;165(2):320–336. doi: 10.1016/0014-4827(86)90586-0. [DOI] [PubMed] [Google Scholar]
  31. Klebe R. J., Hall J. R., Naylor S. L., Dickey W. D. Bioautography of cell attachment proteins. Exp Cell Res. 1978 Aug;115(1):73–78. doi: 10.1016/0014-4827(78)90403-2. [DOI] [PubMed] [Google Scholar]
  32. Klebe R. J., Mock P. J. Effect of glycosaminoglycans on fibronectin-mediated cell attachment. J Cell Physiol. 1982 Jul;112(1):5–9. doi: 10.1002/jcp.1041120103. [DOI] [PubMed] [Google Scholar]
  33. Knox P., Wells P. Cell adhesion and proteoglycans. I. The effect of exogenous proteoglycans on the attachment of chick embryo fibroblasts to tissue culture plastic and collagen. J Cell Sci. 1979 Dec;40:77–88. doi: 10.1242/jcs.40.1.77. [DOI] [PubMed] [Google Scholar]
  34. Lark M. W., Culp L. A. Multiple classes of heparan sulfate proteoglycans from fibroblast substratum adhesion sites. Affinity fractionation on columns of platelet factor 4, plasma fibronectin, and octyl-sepharose. J Biol Chem. 1984 Jun 10;259(11):6773–6782. [PubMed] [Google Scholar]
  35. Lark M. W., Laterra J., Culp L. A. Close and focal contact adhesions of fibroblasts to a fibronectin-containing matrix. Fed Proc. 1985 Feb;44(2):394–403. [PubMed] [Google Scholar]
  36. Laterra J., Culp L. A. Differences in hyaluronate binding to plasma and cell surface fibronectins. Requirement for aggregation. J Biol Chem. 1982 Jan 25;257(2):719–726. [PubMed] [Google Scholar]
  37. Laterra J., Norton E. K., Izzard C. S., Culp L. A. Contact formation by fibroblasts adhering to heparan sulfate-binding substrata (fibronectin or platelet factor 4). Exp Cell Res. 1983 Jun;146(1):15–27. doi: 10.1016/0014-4827(83)90320-8. [DOI] [PubMed] [Google Scholar]
  38. Laterra J., Silbert J. E., Culp L. A. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J Cell Biol. 1983 Jan;96(1):112–123. doi: 10.1083/jcb.96.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Linsenmayer T. F., Gibney E., Toole B. P., Gross J. Cellular adhesion to collagen. Exp Cell Res. 1978 Oct 15;116(2):470–474. doi: 10.1016/0014-4827(78)90473-1. [DOI] [PubMed] [Google Scholar]
  40. Nagata K., Humphries M. J., Olden K., Yamada K. M. Collagen can modulate cell interactions with fibronectin. J Cell Biol. 1985 Aug;101(2):386–394. doi: 10.1083/jcb.101.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Oegema T. R., Jr, Kraft E. L., Jourdian G. W., Van Valen T. R. Phosphorylation of chondroitin sulfate in proteoglycans from the swarm rat chondrosarcoma. J Biol Chem. 1984 Feb 10;259(3):1720–1726. [PubMed] [Google Scholar]
  42. Onodera S., Nagai Y. Isolation and characterization of cartilage proteoglycans immunoreactive with an antibody to skin proteodermatan sulfate core protein. Biochem Biophys Res Commun. 1985 May 31;129(1):95–101. doi: 10.1016/0006-291x(85)91408-1. [DOI] [PubMed] [Google Scholar]
  43. Osterlund E., Eronen I., Osterlund K., Vuento M. Secondary structure of human plasma fibronectin: conformational change induced by calf alveolar heparan sulfates. Biochemistry. 1985 May 21;24(11):2661–2667. doi: 10.1021/bi00332a011. [DOI] [PubMed] [Google Scholar]
  44. Pearson C. H., Gibson G. J. Proteoglycans of bovine periodontal ligament and skin. Occurrence of different hybrid-sulphated galactosaminoglycans in distinct proteoglycans. Biochem J. 1982 Jan 1;201(1):27–37. doi: 10.1042/bj2010027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Pearson C. H., Winterbottom N., Fackre D. S., Scott P. G., Carpenter M. R. The NH2-terminal amino acid sequence of bovine skin proteodermatan sulfate. J Biol Chem. 1983 Dec 25;258(24):15101–15104. [PubMed] [Google Scholar]
  46. Pierschbacher M. D., Hayman E. G., Ruoslahti E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981 Oct;26(2 Pt 2):259–267. doi: 10.1016/0092-8674(81)90308-1. [DOI] [PubMed] [Google Scholar]
  47. Poole A. R., Webber C., Pidoux I., Choi H., Rosenberg L. C. Localization of a dermatan sulfate proteoglycan (DS-PGII) in cartilage and the presence of an immunologically related species in other tissues. J Histochem Cytochem. 1986 May;34(5):619–625. doi: 10.1177/34.5.3701029. [DOI] [PubMed] [Google Scholar]
  48. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  49. Rich A. M., Pearlstein E., Weissmann G., Hoffstein S. T. Cartilage proteoglycans inhibit fibronectin-mediated adhesion. Nature. 1981 Sep 17;293(5829):224–226. doi: 10.1038/293224a0. [DOI] [PubMed] [Google Scholar]
  50. Rosenberg L. C., Choi H. U., Poole A. R., Lewandowska K., Culp L. A. Biological roles of dermatan sulphate proteoglycans. Ciba Found Symp. 1986;124:47–68. doi: 10.1002/9780470513385.ch4. [DOI] [PubMed] [Google Scholar]
  51. Rosenberg L. C., Choi H. U., Tang L. H., Johnson T. L., Pal S., Webber C., Reiner A., Poole A. R. Isolation of dermatan sulfate proteoglycans from mature bovine articular cartilages. J Biol Chem. 1985 May 25;260(10):6304–6313. [PubMed] [Google Scholar]
  52. Ruoslahti E., Engvall E. Complexing of fibronectin glycosaminoglycans and collagen. Biochim Biophys Acta. 1980 Aug 13;631(2):350–358. doi: 10.1016/0304-4165(80)90308-6. [DOI] [PubMed] [Google Scholar]
  53. Schwarz M. A., Juliano R. L. Surface activation of the cell adhesion fragment of fibronectin. Exp Cell Res. 1984 Aug;153(2):550–555. doi: 10.1016/0014-4827(84)90624-4. [DOI] [PubMed] [Google Scholar]
  54. Scott J. E., Orford C. R. Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem J. 1981 Jul 1;197(1):213–216. doi: 10.1042/bj1970213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Scott J. E., Orford C. R., Hughes E. W. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochem J. 1981 Jun 1;195(3):573–581. doi: 10.1042/bj1950573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Scott J. E. The periphery of the developing collagen fibril. Quantitative relationships with dermatan sulphate and other surface-associated species. Biochem J. 1984 Feb 15;218(1):229–233. doi: 10.1042/bj2180229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Siri A., Balza E., Carnemolla B., Castellani P., Borsi L., Zardi L. DNA-binding domains of human plasma fibronectin. pH and calcium ion modulation of fibronectin binding to DNA and heparin. Eur J Biochem. 1986 Feb 3;154(3):533–538. doi: 10.1111/j.1432-1033.1986.tb09431.x. [DOI] [PubMed] [Google Scholar]
  58. Stopak D., Harris A. K. Connective tissue morphogenesis by fibroblast traction. I. Tissue culture observations. Dev Biol. 1982 Apr;90(2):383–398. doi: 10.1016/0012-1606(82)90388-8. [DOI] [PubMed] [Google Scholar]
  59. Sugrue S. P., Hay E. D. Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol. 1981 Oct;91(1):45–54. doi: 10.1083/jcb.91.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Tooney N. M., Mosesson M. W., Amrani D. L., Hainfeld J. F., Wall J. S. Solution and surface effects on plasma fibronectin structure. J Cell Biol. 1983 Dec;97(6):1686–1692. doi: 10.1083/jcb.97.6.1686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Urushihara H., Yamada K. M. Evidence for involvement of more than one class of glycoprotein in cell interactions with fibronectin. J Cell Physiol. 1986 Mar;126(3):323–332. doi: 10.1002/jcp.1041260302. [DOI] [PubMed] [Google Scholar]
  62. Vogel K. G., Fisher L. W. Comparisons of antibody reactivity and enzyme sensitivity between small proteoglycans from bovine tendon, bone, and cartilage. J Biol Chem. 1986 Aug 25;261(24):11334–11340. [PubMed] [Google Scholar]
  63. Vogel K. G., Heinegård D. Characterization of proteoglycans from adult bovine tendon. J Biol Chem. 1985 Aug 5;260(16):9298–9306. [PubMed] [Google Scholar]
  64. Vogel K. G., Paulsson M., Heinegård D. Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J. 1984 Nov 1;223(3):587–597. doi: 10.1042/bj2230587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Waite K. A., Mugnai G., Culp L. A. A second cell-binding domain on fibronectin (RGDS-independent) for neurite extension of human neuroblastoma cells. Exp Cell Res. 1987 Apr;169(2):311–327. doi: 10.1016/0014-4827(87)90193-5. [DOI] [PubMed] [Google Scholar]
  66. Wight T. N., Ross R. Proteoglycans in primate arteries. II. Synthesis and secretion of glycosaminoglycans by arterial smooth muscle cells in culture. J Cell Biol. 1975 Dec;67(3):675–686. doi: 10.1083/jcb.67.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Wightman B. C., Weltman E. A., Culp L. A. Chondroitin sulphate proteoglycan in the substratum adhesion sites of Balb/c 3T3 cells. Fractionation on various ion-exchange and affinity columns. Biochem J. 1986 Apr 15;235(2):469–479. doi: 10.1042/bj2350469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Woods A., Hök M., Kjellén L., Smith C. G., Rees D. A. Relationship of heparan sulfate proteoglycans to the cytoskeleton and extracellular matrix of cultured fibroblasts. J Cell Biol. 1984 Nov;99(5):1743–1753. doi: 10.1083/jcb.99.5.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]
  70. Yanagishita M., Rodbard D., Hascall V. C. Isolation and characterization of proteoglycans from porcine ovarian follicular fluid. J Biol Chem. 1979 Feb 10;254(3):911–920. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES