Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Sep 1;105(3):1121–1128. doi: 10.1083/jcb.105.3.1121

Characterization of a monoclonal antibody that induces the acrosome reaction of sea urchin sperm

PMCID: PMC2114814  PMID: 3308905

Abstract

A monoclonal antibody, J18/29, induces the acrosome reaction (AR) in spermatozoa of the sea urchin Strongylocentrotus purpuratus. J18/29 induces increases in both intracellular Ca2+ and intracellular pH similar to those occurring upon induction of the AR by the natural inducer, the fucose sulfate-rich glycoconjugate of egg jelly. Lowering the Ca2+ concentration or the pH of the seawater inhibits the J18/29- induced AR, as does treatment with Co2+, an inhibitor of Ca2+ channels. The J18/29-induced AR is also inhibited by verapamil, tetraethylammonium chloride, and elevated K+. All these treatments cause similar inhibition of the egg jelly-induced AR. J18/29 reacts with a group of membrane proteins ranging in molecular mass from 340 to 25 kD, as shown by immunoprecipitation of lysates of 125I-labeled sperm and Western blots. The most prominent reacting proteins are of molecular masses of 320, 240, 170, and 58 kD. The basis of the multiple reactivity appears to reside in the polypeptide chains of these proteins, as J18/29 binding is sensitive to protease digestion but resistant to periodate oxidation. There are approximately 570,000 sites per cell for J18/29 binding. J18/29 is the only reagent of known binding specificity that induces the AR; it identifies a subset of sperm membrane proteins whose individual characterization may lead to the isolation of the receptors involved in the triggering of the AR at fertilization.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bloodgood R. A., Woodward M. P., Salomonsky N. L. Redistribution and shedding of flagellar membrane glycoproteins visualized using an anti-carbohydrate monoclonal antibody and concanavalin A. J Cell Biol. 1986 May;102(5):1797–1812. doi: 10.1083/jcb.102.5.1797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Christen R., Schackmann R. W., Shapiro B. M. Elevation of the intracellular pH activates respiration and motility of sperm of the sea urchin, Strongylocentrotus purpuratus. J Biol Chem. 1982 Dec 25;257(24):14881–14890. [PubMed] [Google Scholar]
  3. Christen R., Schackmann R. W., Shapiro B. M. Interactions between sperm and sea urchin egg jelly. Dev Biol. 1983 Jul;98(1):1–14. doi: 10.1016/0012-1606(83)90330-5. [DOI] [PubMed] [Google Scholar]
  4. Dangott L. J., Garbers D. L. Identification and partial characterization of the receptor for speract. J Biol Chem. 1984 Nov 25;259(22):13712–13716. [PubMed] [Google Scholar]
  5. Eckberg W. R., Metz C. B. Isolation of an arbacia sperm fertilization antigen. J Exp Zool. 1982 May 20;221(1):101–105. doi: 10.1002/jez.1402210113. [DOI] [PubMed] [Google Scholar]
  6. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  7. Garbers D. L., Kopf G. S. The regulation of spermatozoa by calcium cyclic nucleotides. Adv Cyclic Nucleotide Res. 1980;13:251–306. [PubMed] [Google Scholar]
  8. Garbers D. L., Kopf G. S., Tubb D. J., Olson G. Elevation of sperm adenosine 3':5'-monophosphate concentrations by a fucose-sulfate-rich complex associated with eggs: I. Structural characterization. Biol Reprod. 1983 Dec;29(5):1211–1220. doi: 10.1095/biolreprod29.5.1211. [DOI] [PubMed] [Google Scholar]
  9. Garbers D. L., Watkins H. D., Hansbrough J. R., Smith A., Misono K. S. The amino acid sequence and chemical synthesis of speract and of speract analogues. J Biol Chem. 1982 Mar 25;257(6):2734–2737. [PubMed] [Google Scholar]
  10. Hansbrough J. R., Garbers D. L. Sodium-dependent activation of sea urchin spermatozoa by speract and monensin. J Biol Chem. 1981 Mar 10;256(5):2235–2241. [PubMed] [Google Scholar]
  11. Klotz I. M. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science. 1982 Sep 24;217(4566):1247–1249. doi: 10.1126/science.6287580. [DOI] [PubMed] [Google Scholar]
  12. Lane D., Koprowski H. Molecular recognition and the future of monoclonal antibodies. Nature. 1982 Mar 18;296(5854):200–202. doi: 10.1038/296200a0. [DOI] [PubMed] [Google Scholar]
  13. Lee H. C., Johnson C., Epel D. Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev Biol. 1983 Jan;95(1):31–45. doi: 10.1016/0012-1606(83)90004-0. [DOI] [PubMed] [Google Scholar]
  14. Lopo A. C., Vacquier V. D. Antibody to a sperm surface glycoprotein inhibits the egg jelly-induced acrosome reaction of sea urchin sperm. Dev Biol. 1980 Oct;79(2):325–333. doi: 10.1016/0012-1606(80)90119-0. [DOI] [PubMed] [Google Scholar]
  15. Oettgen H. C., Pettey C. L., Maloy W. L., Terhorst C. A T3-like protein complex associated with the antigen receptor on murine T cells. Nature. 1986 Mar 20;320(6059):272–275. doi: 10.1038/320272a0. [DOI] [PubMed] [Google Scholar]
  16. Podell S. B., Moy G. W., Vacquier V. D. Isolation and characterization of a plasma membrane fraction from sea urchin sperm exhibiting species specific recognition of the egg surface. Biochim Biophys Acta. 1984 Nov 21;778(1):25–37. doi: 10.1016/0005-2736(84)90444-9. [DOI] [PubMed] [Google Scholar]
  17. Podell S. B., Vacquier V. D. Inhibition of sea urchin sperm acrosome reaction by antibodies directed against two sperm membrane proteins. Characterization and mechanism of action. Exp Cell Res. 1984 Dec;155(2):467–476. doi: 10.1016/0014-4827(84)90207-6. [DOI] [PubMed] [Google Scholar]
  18. Porter D. C., Vacquier V. D. Phosphorylation of sperm histone H1 is induced by the egg jelly layer in the sea urchin Strongylocentrotus purpuratus. Dev Biol. 1986 Jul;116(1):203–212. doi: 10.1016/0012-1606(86)90057-6. [DOI] [PubMed] [Google Scholar]
  19. Repaske D. R., Garbers D. L. A hydrogen ion flux mediates stimulation of respiratory activity by speract in sea urchin spermatozoa. J Biol Chem. 1983 May 25;258(10):6025–6029. [PubMed] [Google Scholar]
  20. Saling P. M., Eckberg W. R., Metz C. B. Mechanism of univalent antisperm antibody inhibition of fertilization in the sea urchin, Arbacia punctulata. J Exp Zool. 1982 May 20;221(1):93–99. doi: 10.1002/jez.1402210112. [DOI] [PubMed] [Google Scholar]
  21. Schackmann R. W., Chock P. B. Alteration of intracellular [Ca2+] in sea urchin sperm by the egg peptide speract. Evidence that increased intracellular Ca2+ is coupled to Na+ entry and increased intracellular pH. J Biol Chem. 1986 Jul 5;261(19):8719–8728. [PubMed] [Google Scholar]
  22. Schackmann R. W., Christen R., Shapiro B. M. Measurement of plasma membrane and mitochondrial potentials in sea urchin sperm. Changes upon activation and induction of the acrosome reaction. J Biol Chem. 1984 Nov 25;259(22):13914–13922. [PubMed] [Google Scholar]
  23. Schackmann R. W., Christen R., Shapiro B. M. Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6066–6070. doi: 10.1073/pnas.78.10.6066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schackmann R. W., Eddy E. M., Shapiro B. M. The acrosome reaction of Strongylocentrotus purpuratus sperm. Ion requirements and movements. Dev Biol. 1978 Aug;65(2):483–495. doi: 10.1016/0012-1606(78)90043-x. [DOI] [PubMed] [Google Scholar]
  25. Schackmann R. W., Shapiro B. M. A partial sequence of ionic changes associated with the acrosome reaction of Strongylocentrotus purpuratus. Dev Biol. 1981 Jan 15;81(1):145–154. doi: 10.1016/0012-1606(81)90357-2. [DOI] [PubMed] [Google Scholar]
  26. SeGall G. K., Lennarz W. J. Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Dev Biol. 1979 Jul;71(1):33–48. doi: 10.1016/0012-1606(79)90080-0. [DOI] [PubMed] [Google Scholar]
  27. SeGall G. K., Lennarz W. J. Jelly coat and induction of the acrosome reaction in echinoid sperm. Dev Biol. 1981 Aug;86(1):87–93. doi: 10.1016/0012-1606(81)90318-3. [DOI] [PubMed] [Google Scholar]
  28. Tilney L. G., Kiehart D. P., Sardet C., Tilney M. Polymerization of actin. IV. Role of Ca++ and H+ in the assembly of actin and in membrane fusion in the acrosomal reaction of echinoderm sperm. J Cell Biol. 1978 May;77(2):536–550. doi: 10.1083/jcb.77.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Trimmer J. S., Schackmann R. W., Vacquier V. D. Monoclonal antibodies increase intracellular Ca2+ in sea urchin spermatozoa. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9055–9059. doi: 10.1073/pnas.83.23.9055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Trimmer J. S., Trowbridge I. S., Vacquier V. D. Monoclonal antibody to a membrane glycoprotein inhibits the acrosome reaction and associated Ca2+ and H+ fluxes of sea urchin sperm. Cell. 1985 Mar;40(3):697–703. doi: 10.1016/0092-8674(85)90218-1. [DOI] [PubMed] [Google Scholar]
  31. Trimmer J. S., Vacquier V. D. Activation of sea urchin gametes. Annu Rev Cell Biol. 1986;2:1–26. doi: 10.1146/annurev.cb.02.110186.000245. [DOI] [PubMed] [Google Scholar]
  32. Ward G. E., Garbers D. L., Vacquier V. D. Effects of extracellular egg factors on sperm guanylate cyclase. Science. 1985 Feb 15;227(4688):768–770. doi: 10.1126/science.2857502. [DOI] [PubMed] [Google Scholar]
  33. Ward G. E., Moy G. W., Vacquier V. D. Dephosphorylation of sea urchin sperm guanylate cyclase during fertilization. Adv Exp Med Biol. 1986;207:359–382. doi: 10.1007/978-1-4613-2255-9_19. [DOI] [PubMed] [Google Scholar]
  34. Ward S., Roberts T. M., Strome S., Pavalko F. M., Hogan E. Monoclonal antibodies that recognize a polypeptide antigenic determinant shared by multiple Caenorhabditis elegans sperm-specific proteins. J Cell Biol. 1986 May;102(5):1778–1786. doi: 10.1083/jcb.102.5.1778. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES