Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Sep 1;105(3):1365–1376. doi: 10.1083/jcb.105.3.1365

Sequential disassembly of myofibrils induced by myristate acetate in cultured myotubes

PMCID: PMC2114821  PMID: 3654756

Abstract

The phorbol ester TPA induces the sequential disassembly of myofibrils. First the alpha-actin thin filaments are disrupted and then, hours later, the myosin heavy chain (MHC) thick filaments. TPA does not induce the disassembly of the beta- and gamma-actin thin filaments of stress fibers in presumptive myoblasts or fibroblasts, nor does it block the reemergence of stress fibers in 72-h myosacs that have been depleted of all myofibrillar molecules. There are differences in where, when, and how myofibrillar alpha-actin and MHC are degraded and eliminated from TPA-myosacs. Though the anisodiametric myotubes have begun to retract into isodiametric myosacs after 5 h in TPA, staining with anti-MHC reveals normal tandem A bands. In contrast, staining with mAb to muscle actin fails to reveal tandem I bands. Instead, both mAb to muscle actin and rhophalloidin brilliantly stain numerous disk-like bodies approximately 3.0 micron in diameter. These muscle actin bodies do not fuse with one another, nor do they costain with anti-MHC. All muscle actin bodies and/or molecules disappear in 36-h myosacs. The collapse of A bands is first initiated in 10-h myosacs. Their loss correlates with the appearance of immense, amorphous MHC patches. MHC patches range from a few micrometers to over 60 micron in size. They do not costain with antimuscle actin or rho-phalloidin. While diminishing in number and fluorescence intensity, MHC aggregates are present in 30% of the 72-h myosacs. Myosacs removed from TPA rapidly elongate, and after 48 h display normal newly assembled myofibrils. TPA reversibly blocks incorporation of [35S]methionine into myofibrillar alpha-actin, MHC, myosin light chains 1 and 2, the tropomyosins, and troponin C. It does not block the synthesis of beta- or gamma-actins, the nonmyofibrillar MHC or light chains, tubulin, vimentin, desmin, or most household molecules.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antin P. B., Tokunaka S., Nachmias V. T., Holtzer H. Role of stress fiber-like structures in assembling nascent myofibrils in myosheets recovering from exposure to ethyl methanesulfonate. J Cell Biol. 1986 Apr;102(4):1464–1479. doi: 10.1083/jcb.102.4.1464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berridge M. Second messenger dualism in neuromodulation and memory. 1986 Sep 25-Oct 1Nature. 323(6086):294–295. doi: 10.1038/323294a0. [DOI] [PubMed] [Google Scholar]
  3. Chacko S. DNA synthesis, mitosis, and differentiation in cardiac myogenesis. Dev Biol. 1973 Nov;35(1):1–18. doi: 10.1016/0012-1606(73)90002-x. [DOI] [PubMed] [Google Scholar]
  4. Chi J. C., Rubinstein N., Strahs K., Holtzer H. Synthesis of myosin heavy and light chains in muscle cultures. J Cell Biol. 1975 Dec;67(3):523–537. doi: 10.1083/jcb.67.3.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen R., Pacifici M., Rubinstein N., Biehl J., Holtzer H. Effect of a tumour promoter on myogenesis. Nature. 1977 Apr 7;266(5602):538–540. doi: 10.1038/266538a0. [DOI] [PubMed] [Google Scholar]
  6. Comb M., Birnberg N. C., Seasholtz A., Herbert E., Goodman H. M. A cyclic AMP- and phorbol ester-inducible DNA element. 1986 Sep 25-Oct 1Nature. 323(6086):353–356. doi: 10.1038/323353a0. [DOI] [PubMed] [Google Scholar]
  7. Cossu G., Pacifici M., Adamo S., Bouché M., Molinaro M. TPA-induced inhibition of the expression of differentiative traits in cultured myotubes: dependence on protein synthesis. Differentiation. 1982;21(1):62–65. doi: 10.1111/j.1432-0436.1982.tb01197.x. [DOI] [PubMed] [Google Scholar]
  8. Croop J., Dubyak G., Toyama Y., Dlugosz A., Scarpa A., Holtzer H. Effects of 12-O-tetradecanoyl-phorbol-13-acetate on Myofibril integrity and Ca2+ content in developing myotubes. Dev Biol. 1982 Feb;89(2):460–474. doi: 10.1016/0012-1606(82)90334-7. [DOI] [PubMed] [Google Scholar]
  9. Croop J., Holtzer H. Response of myogenic and fibrogenic cells to cytochalasin B and to colcemid. I. Light microscope observations. J Cell Biol. 1975 May;65(2):271–285. doi: 10.1083/jcb.65.2.271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dlugosz A. A., Antin P. B., Nachmias V. T., Holtzer H. The relationship between stress fiber-like structures and nascent myofibrils in cultured cardiac myocytes. J Cell Biol. 1984 Dec;99(6):2268–2278. doi: 10.1083/jcb.99.6.2268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dlugosz A. A., Tapscott S. J., Holtzer H. Effects of phorbol 12-myristate 13-acetate on the differentiation program of embryonic chick skeletal myoblasts. Cancer Res. 1983 Jun;43(6):2780–2789. [PubMed] [Google Scholar]
  12. Forry-Schaudies S., Murray J. M., Toyama Y., Holtzer H. Effects of colcemid and taxol on microtubules and intermediate filaments in chick embryo fibroblasts. Cell Motil Cytoskeleton. 1986;6(3):324–338. doi: 10.1002/cm.970060309. [DOI] [PubMed] [Google Scholar]
  13. Gerard K. W., Schneider D. L. Evidence for degradation of myofibrillar proteins in lysosomes. Myofibrillar proteins derivatized by intramuscular injection of N-ethylmaleimide are sequestered in lysosomes. J Biol Chem. 1979 Dec 10;254(23):11798–11805. [PubMed] [Google Scholar]
  14. Glacy S. D. Pattern and time course of rhodamine-actin incorporation in cardiac myocytes. J Cell Biol. 1983 Apr;96(4):1164–1167. doi: 10.1083/jcb.96.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  16. Gunning P., Ponte P., Kedes L., Hickey R. J., Skoultchi A. I. Expression of human cardiac actin in mouse L cells: a sarcomeric actin associates with a nonmuscle cytoskeleton. Cell. 1984 Mar;36(3):709–715. doi: 10.1016/0092-8674(84)90351-9. [DOI] [PubMed] [Google Scholar]
  17. Hill C. S., Duran S., Lin Z. X., Weber K., Holtzer H. Titin and myosin, but not desmin, are linked during myofibrillogenesis in postmitotic mononucleated myoblasts. J Cell Biol. 1986 Dec;103(6 Pt 1):2185–2196. doi: 10.1083/jcb.103.6.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Holtzer H., Croop J., Dienstman S., Ishikawa H., Somlyo A. P. Effects of cytochaslasin B and colcemide on myogenic cultures. Proc Natl Acad Sci U S A. 1975 Feb;72(2):513–517. doi: 10.1073/pnas.72.2.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holtzer H., Forry-Schaudies S., Dlugosz A., Antin P., Dubyak G. Interactions between IFs, microtubules, and myofibrils in fibrogenic and myogenic cells. Ann N Y Acad Sci. 1985;455:106–125. doi: 10.1111/j.1749-6632.1985.tb50407.x. [DOI] [PubMed] [Google Scholar]
  20. Holtzer H., Pacifici M., Payette R., Croop J., Dlugosz A., Toyama Y. TPA reversibly blocks the differentiation of chick myogenic, chondrogenic, and melanogenic cells. Carcinog Compr Surv. 1982;7:347–357. [PubMed] [Google Scholar]
  21. Holtzer H., Sasse J., Horwitz A., Antin P., Pacifici M. Myogenic lineages and myofibrillogenesis. Bibl Anat. 1986;(29):109–125. [PubMed] [Google Scholar]
  22. Holtzer H., Strahs K., Biehl J., Somlyo A. P., Ishikawa H. Thick and thin filaments in postmitotic, mononucleated myoblasts. Science. 1975 May 30;188(4191):943–945. doi: 10.1126/science.1138363. [DOI] [PubMed] [Google Scholar]
  23. Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
  24. Kawamoto S., Hidaka H. Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin-binding proteins. Biochem Biophys Res Commun. 1984 Feb 14;118(3):736–742. doi: 10.1016/0006-291x(84)91456-6. [DOI] [PubMed] [Google Scholar]
  25. Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
  26. Kreis T. E., Geiger B., Schlessinger J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell. 1982 Jul;29(3):835–845. doi: 10.1016/0092-8674(82)90445-7. [DOI] [PubMed] [Google Scholar]
  27. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  28. Lin J. J., Lin J. L. Assembly of different isoforms of actin and tropomyosin into the skeletal tropomyosin-enriched microfilaments during differentiation of muscle cells in vitro. J Cell Biol. 1986 Dec;103(6 Pt 1):2173–2183. doi: 10.1083/jcb.103.6.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lowe M. E., Pacifici M., Holtzer H. Effects of phorbol-12-myristate-13-acetate on the phenotypic program of cultured chondroblasts and fibroblasts. Cancer Res. 1978 Aug;38(8):2350–2356. [PubMed] [Google Scholar]
  30. Matsuda R., Spector D. H., Strohman R. C. Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms. Dev Biol. 1983 Dec;100(2):478–488. doi: 10.1016/0012-1606(83)90240-3. [DOI] [PubMed] [Google Scholar]
  31. Meigs J. B., Wang Y. L. Reorganization of alpha-actinin and vinculin induced by a phorbol ester in living cells. J Cell Biol. 1986 Apr;102(4):1430–1438. doi: 10.1083/jcb.102.4.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 1978 Nov;15(3):855–864. doi: 10.1016/0092-8674(78)90270-2. [DOI] [PubMed] [Google Scholar]
  33. Nguyen H. T., Medford R. M., Nadal-Ginard B. Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell. 1983 Aug;34(1):281–293. doi: 10.1016/0092-8674(83)90159-9. [DOI] [PubMed] [Google Scholar]
  34. Nishizuka Y. Studies and perspectives of protein kinase C. Science. 1986 Jul 18;233(4761):305–312. doi: 10.1126/science.3014651. [DOI] [PubMed] [Google Scholar]
  35. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  36. Payette R., Biehl J., Toyama Y., Holtzer S., Holtzer H. Effects of 12-O-tetradecanoylphorbol-13-acetate on the differentiation of avian melanocytes. Cancer Res. 1980 Jul;40(7):2465–2474. [PubMed] [Google Scholar]
  37. Reville W. J., Goll D. E., Stromer M. H., Robson R. M., Dayton W. R. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Subcellular localization of the protease in porcine skeletal muscle. J Cell Biol. 1976 Jul;70(1):1–8. doi: 10.1083/jcb.70.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Schliwa M., Nakamura T., Porter K. R., Euteneuer U. A tumor promoter induces rapid and coordinated reorganization of actin and vinculin in cultured cells. J Cell Biol. 1984 Sep;99(3):1045–1059. doi: 10.1083/jcb.99.3.1045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stossel T. P., Chaponnier C., Ezzell R. M., Hartwig J. H., Janmey P. A., Kwiatkowski D. J., Lind S. E., Smith D. B., Southwick F. S., Yin H. L. Nonmuscle actin-binding proteins. Annu Rev Cell Biol. 1985;1:353–402. doi: 10.1146/annurev.cb.01.110185.002033. [DOI] [PubMed] [Google Scholar]
  40. Tapscott S. J., Bennett G. S., Toyama Y., Kleinbart F., Holtzer H. Intermediate filament proteins in the developing chick spinal cord. Dev Biol. 1981 Aug;86(1):40–54. doi: 10.1016/0012-1606(81)90313-4. [DOI] [PubMed] [Google Scholar]
  41. Tassin A. M., Maro B., Bornens M. Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol. 1985 Jan;100(1):35–46. doi: 10.1083/jcb.100.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tatò F., Alemà S., Dlugosz A., Boettiger D., Holtzer H., Cossu G., Pacifici M. Development of 'revertant' myotubes in cultures of Rous sarcoma virus transformed avian myogenic cells. Differentiation. 1983;24(2):131–139. doi: 10.1111/j.1432-0436.1983.tb01312.x. [DOI] [PubMed] [Google Scholar]
  43. Taylor D. L., Wang Y. L. Fluorescently labelled molecules as probes of the structure and function of living cells. Nature. 1980 Apr 3;284(5755):405–410. doi: 10.1038/284405a0. [DOI] [PubMed] [Google Scholar]
  44. Toyama Y., Forry-Schaudies S., Hoffman B., Holtzer H. Effects of taxol and Colcemid on myofibrillogenesis. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6556–6560. doi: 10.1073/pnas.79.21.6556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vandekerckhove J., Weber K. Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J Mol Biol. 1984 Nov 5;179(3):391–413. doi: 10.1016/0022-2836(84)90072-x. [DOI] [PubMed] [Google Scholar]
  46. Weeds A. Actin-binding proteins--regulators of cell architecture and motility. Nature. 1982 Apr 29;296(5860):811–816. doi: 10.1038/296811a0. [DOI] [PubMed] [Google Scholar]
  47. Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yeoh G. C., Holtzer H. The effect of cell density, conditioned medium and cytosine arabinoside on myogenesis in primary and secondary cultures. Exp Cell Res. 1977 Jan;104(1):63–78. doi: 10.1016/0014-4827(77)90069-6. [DOI] [PubMed] [Google Scholar]
  49. Zeman R. J., Kameyama T., Matsumoto K., Bernstein P., Etlinger J. D. Regulation of protein degradation in muscle by calcium. Evidence for enhanced nonlysosomal proteolysis associated with elevated cytosolic calcium. J Biol Chem. 1985 Nov 5;260(25):13619–13624. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES