Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Sep 1;105(3):1283–1296. doi: 10.1083/jcb.105.3.1283

Control of microtubule nucleation and stability in Madin-Darby canine kidney cells: the occurrence of noncentrosomal, stable detyrosinated microtubules

PMCID: PMC2114822  PMID: 2888771

Abstract

The microtubule-nucleating activity of centrosomes was analyzed in fibroblastic (Vero) and in epithelial cells (PtK2, Madin-Darby canine kidney [MDCK]) by double-immunofluorescence labeling with anti- centrosome and antitubulin antibodies. Most of the microtubules emanated from the centrosomes in Vero cells, whereas the microtubule network of MDCK cells appeared to be noncentrosome nucleated and randomly organized. The pattern of microtubule organization in PtK2 cells was intermediate to the patterns observed in the typical fibroblastic and epithelial cells. The two centriole cylinders were tightly associated and located close to the nucleus in Vero and PtK2 cells. In MDCK cells, however, they were clearly separated and electron microscopy revealed that they nucleated only a few microtubules. The stability of centrosomal and noncentrosomal microtubules was examined by treatment of these different cell lines with various concentrations of nocodazole. 1.6 microM nocodazole induced an almost complete depolymerization of microtubules in Vero cells; some centrosome nucleated microtubules remained in PtK2 cells, while many noncentrosomal microtubules resisted that treatment in MDCK cells. Centrosomal and noncentrosomal microtubules regrew in MDCK cells with similar kinetics after release from complete disassembly by high concentrations of nocodazole (33 microM). During regrowth, centrosomal microtubules became resistant to 1.6 microM nocodazole before the noncentrosomal ones, although the latter eventually predominate. We suggest that in MDCK cells, microtubules grow and shrink as proposed by the dynamic instability model but the presence of factors prevents them from complete depolymerization. This creates seeds for reelongation that compete with nucleation off the centrosome. By using specific antibodies, we have shown that the abundant subset of nocodazole- resistant microtubules in MDCK cells contained detyrosinated alpha- tubulin (glu tubulin). On the other hand, the first microtubules to regrow after nocodazole removal contained only tyrosinated tubulin. Glu- tubulin became detectable only after 30 min of microtubule regrowth. This strongly supports the hypothesis that alpha-tubulin detyrosination occurs primarily on "long lived" microtubules and is not the cause of the stabilization process. This is also supported by the increased amount of glu-tubulin that we found in taxol-treated cells.

Full Text

The Full Text of this article is available as a PDF (6.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bornens M. Is the centriole bound to the nuclear membrane? Nature. 1977 Nov 3;270(5632):80–82. doi: 10.1038/270080a0. [DOI] [PubMed] [Google Scholar]
  2. Brinkley B. R., Cox S. M., Pepper D. A., Wible L., Brenner S. L., Pardue R. L. Tubulin assembly sites and the organization of cytoplasmic microtubules in cultured mammalian cells. J Cell Biol. 1981 Sep;90(3):554–562. doi: 10.1083/jcb.90.3.554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Microtubule stability and assembly in living cells: the influence of metabolic inhibitors, taxol and pH. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 1):227–240. doi: 10.1101/sqb.1982.046.01.026. [DOI] [PubMed] [Google Scholar]
  5. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5608–5612. doi: 10.1073/pnas.78.9.5608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deanin G. G., Preston S. F., Hanson R. K., Gordon M. W. On the mechanism of turnover of the carboxy-terminal tyrosine of the alpha chain of tubulin. Eur J Biochem. 1980 Aug;109(1):207–216. doi: 10.1111/j.1432-1033.1980.tb04786.x. [DOI] [PubMed] [Google Scholar]
  7. Dylewski D. P., Keenan T. W. Centrioles in the mammary epithelium of the rat. J Cell Sci. 1984 Dec;72:185–193. doi: 10.1242/jcs.72.1.185. [DOI] [PubMed] [Google Scholar]
  8. Fais D., Nadezhdina E. S., Chentsov YuS Evidence for the nucleus-centriole association in living cells obtained by ultracentrifugation. Eur J Cell Biol. 1984 Mar;33(2):190–196. [PubMed] [Google Scholar]
  9. Frankel F. R. Organization and energy-dependent growth of microtubules in cells. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2798–2802. doi: 10.1073/pnas.73.8.2798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fuller G. M., Brinkley B. R., Boughter J. M. Immunofluorescence of mitotic spindles by using monospecific antibody against bovine brain tubulin. Science. 1975 Mar 14;187(4180):948–950. doi: 10.1126/science.1096300. [DOI] [PubMed] [Google Scholar]
  11. Geuens G., Gundersen G. G., Nuydens R., Cornelissen F., Bulinski J. C., DeBrabander M. Ultrastructural colocalization of tyrosinated and detyrosinated alpha-tubulin in interphase and mitotic cells. J Cell Biol. 1986 Nov;103(5):1883–1893. doi: 10.1083/jcb.103.5.1883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gundersen G. G., Bulinski J. C. Microtubule arrays in differentiated cells contain elevated levels of a post-translationally modified form of tubulin. Eur J Cell Biol. 1986 Dec;42(2):288–294. [PubMed] [Google Scholar]
  13. Gundersen G. G., Kalnoski M. H., Bulinski J. C. Distinct populations of microtubules: tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo. Cell. 1984 Oct;38(3):779–789. doi: 10.1016/0092-8674(84)90273-3. [DOI] [PubMed] [Google Scholar]
  14. Horio T., Hotani H. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature. 1986 Jun 5;321(6070):605–607. doi: 10.1038/321605a0. [DOI] [PubMed] [Google Scholar]
  15. Inoué S. Cell division and the mitotic spindle. J Cell Biol. 1981 Dec;91(3 Pt 2):131s–147s. doi: 10.1083/jcb.91.3.131s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Job D., Pabion M., Margolis R. L. Generation of microtubule stability subclasses by microtubule-associated proteins: implications for the microtubule "dynamic instability" model. J Cell Biol. 1985 Nov;101(5 Pt 1):1680–1689. doi: 10.1083/jcb.101.5.1680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Karsenti E., Kobayashi S., Mitchison T., Kirschner M. Role of the centrosome in organizing the interphase microtubule array: properties of cytoplasts containing or lacking centrosomes. J Cell Biol. 1984 May;98(5):1763–1776. doi: 10.1083/jcb.98.5.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kirschner M., Mitchison T. Beyond self-assembly: from microtubules to morphogenesis. Cell. 1986 May 9;45(3):329–342. doi: 10.1016/0092-8674(86)90318-1. [DOI] [PubMed] [Google Scholar]
  19. Kirschner M., Schulze E. Morphogenesis and the control of microtubule dynamics in cells. J Cell Sci Suppl. 1986;5:293–310. doi: 10.1242/jcs.1986.supplement_5.19. [DOI] [PubMed] [Google Scholar]
  20. Kreis T. E. Microinjected antibodies against the cytoplasmic domain of vesicular stomatitis virus glycoprotein block its transport to the cell surface. EMBO J. 1986 May;5(5):931–941. doi: 10.1002/j.1460-2075.1986.tb04306.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kreis T. E. Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 1987 Sep;6(9):2597–2606. doi: 10.1002/j.1460-2075.1987.tb02550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kumar N., Flavin M. Preferential action of a brain detyrosinolating carboxypeptidase on polymerized tubulin. J Biol Chem. 1981 Jul 25;256(14):7678–7686. [PubMed] [Google Scholar]
  23. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  24. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  25. Mitchison T., Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
  26. Nadezhdina E. S., Fais D., Chentsov Y. S. On the association of centrioles with the interphase nucleus. Eur J Cell Biol. 1979 Jun;19(2):109–115. [PubMed] [Google Scholar]
  27. Raybin D., Flavin M. An enzyme tyrosylating alpha-tubulin and its role in microtubule assembly. Biochem Biophys Res Commun. 1975 Aug 4;65(3):1088–1095. doi: 10.1016/s0006-291x(75)80497-9. [DOI] [PubMed] [Google Scholar]
  28. Raybin D., Flavin M. Modification of tubulin by tyrosylation in cells and extracts and its effect on assembly in vitro. J Cell Biol. 1977 May;73(2):492–504. doi: 10.1083/jcb.73.2.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Saxton W. M., Stemple D. L., Leslie R. J., Salmon E. D., Zavortink M., McIntosh J. R. Tubulin dynamics in cultured mammalian cells. J Cell Biol. 1984 Dec;99(6):2175–2186. doi: 10.1083/jcb.99.6.2175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scherson T., Kreis T. E., Schlessinger J., Littauer U. Z., Borisy G. G., Geiger B. Dynamic interactions of fluorescently labeled microtubule-associated proteins in living cells. J Cell Biol. 1984 Aug;99(2):425–434. doi: 10.1083/jcb.99.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schliwa M., Pryzwansky K. B., Euteneuer U. Centrosome splitting in neutrophils: an unusual phenomenon related to cell activation and motility. Cell. 1982 Dec;31(3 Pt 2):705–717. doi: 10.1016/0092-8674(82)90325-7. [DOI] [PubMed] [Google Scholar]
  32. Schulze E., Kirschner M. Microtubule dynamics in interphase cells. J Cell Biol. 1986 Mar;102(3):1020–1031. doi: 10.1083/jcb.102.3.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sherline P., Mascardo R. Epidermal growth factor-induced centrosomal separation: mechanism and relationship to mitogenesis. J Cell Biol. 1982 Oct;95(1):316–322. doi: 10.1083/jcb.95.1.316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Simons K., Fuller S. D. Cell surface polarity in epithelia. Annu Rev Cell Biol. 1985;1:243–288. doi: 10.1146/annurev.cb.01.110185.001331. [DOI] [PubMed] [Google Scholar]
  35. Tassin A. M., Maro B., Bornens M. Fate of microtubule-organizing centers during myogenesis in vitro. J Cell Biol. 1985 Jan;100(1):35–46. doi: 10.1083/jcb.100.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Thompson W. C. The cyclic tyrosination/detyrosination of alpha tubulin. Methods Cell Biol. 1982;24:235–255. doi: 10.1016/s0091-679x(08)60658-5. [DOI] [PubMed] [Google Scholar]
  37. Tucker J. B. Spatial organization of microtubule-organizing centers and microtubules. J Cell Biol. 1984 Jul;99(1 Pt 2):55s–62s. doi: 10.1083/jcb.99.1.55s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tuffanelli D. L., McKeon F., Kleinsmith D. M., Burnham T. K., Kirschner M. Anticentromere and anticentriole antibodies in the scleroderma spectrum. Arch Dermatol. 1983 Jul;119(7):560–566. [PubMed] [Google Scholar]
  39. Warren R. H. Microtubular organization in elongating myogenic cells. J Cell Biol. 1974 Nov;63(2 Pt 1):550–566. doi: 10.1083/jcb.63.2.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Zeligs J. D. Association of centrioles with clusters of apical vesicles in mitotic thyroid epithelial cells. Are centrioles involved in directing secretion? Cell Tissue Res. 1979 Sep 2;201(1):11–21. doi: 10.1007/BF00238043. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES