Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Sep 1;105(3):1311–1318. doi: 10.1083/jcb.105.3.1311

X-ray diffraction evidence for the existence of 102.0- and 230.0-nm transverse periodicities in striated muscle

PMCID: PMC2114824  PMID: 3498727

Abstract

Synchrotron radiation techniques have enabled us to record meridional x- ray diffraction patterns from frog sartorius muscle at resolutions ranging from approximately 2,800 to 38 nm (i.e., overlapping with the optical microscope and the region normally accessible with low angle diffraction cameras). These diffraction patterns represent the transform of the low resolution structure of muscle projected on the sarcomere axis and sampled by its repeat. Altering the sarcomere length results in the sampling of different parts of this transform, which induces changes in the positions and the integrated intensities of the diffraction maxima. This effect has been used to determine the transform of the mass projection on the muscle axis in a quasicontinuous fashion. The results reveal the existence of maxima arising from long-range periodicities in the structure. Determination of the zeroes in the transforms has been used to obtain phase information from which electron density maps have been calculated. The x-ray diffraction diagrams and the resulting electron density maps show the existence of a series of mass bands, disposed transversely to the sarcomere axis and distributed at regular intervals. A set of these transverse structures is associated with thin filaments, and their 102.0-nm repeat suggests a close structural relationship with their known molecular components. A second set, spaced by approximately 230.0 nm, is also present; from diffraction theory one has to conclude that this repeat simultaneously exists in thick and thin filament regions.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENNETT H. S., PORTER K. R. An electron microscope study of sectioned breast muscle of the domestic fowl. Am J Anat. 1953 Jul;93(1):61–105. doi: 10.1002/aja.1000930104. [DOI] [PubMed] [Google Scholar]
  2. Cooke P. A periodic cytoskeletal lattice in striated muscle. Cell Muscle Motil. 1985;6:287–313. doi: 10.1007/978-1-4757-4723-2_9. [DOI] [PubMed] [Google Scholar]
  3. Granger B. L., Lazarides E. The existence of an insoluble Z disc scaffold in chicken skeletal muscle. Cell. 1978 Dec;15(4):1253–1268. doi: 10.1016/0092-8674(78)90051-x. [DOI] [PubMed] [Google Scholar]
  4. HILL A. V. Mechanics of the contractile element of muscle. Nature. 1950 Sep 9;166(4219):415–419. doi: 10.1038/166415a0. [DOI] [PubMed] [Google Scholar]
  5. HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
  6. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  7. Haselgrove J. C. X-ray evidence for conformational changes in the myosin filaments of vertebrate striated muscle. J Mol Biol. 1975 Feb 15;92(1):113–143. doi: 10.1016/0022-2836(75)90094-7. [DOI] [PubMed] [Google Scholar]
  8. Huxley H. E., Brown W. The low-angle x-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol. 1967 Dec 14;30(2):383–434. doi: 10.1016/s0022-2836(67)80046-9. [DOI] [PubMed] [Google Scholar]
  9. Kress M., Huxley H. E., Faruqi A. R., Hendrix J. Structural changes during activation of frog muscle studied by time-resolved X-ray diffraction. J Mol Biol. 1986 Apr 5;188(3):325–342. doi: 10.1016/0022-2836(86)90158-0. [DOI] [PubMed] [Google Scholar]
  10. Page S. G. Fine structure of tortoise skeletal muscle. J Physiol. 1968 Aug;197(3):709–715. doi: 10.1113/jphysiol.1968.sp008583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rome E. M., Hirabayashi T., Perry S. V. X-ray diffraction of muscle labelled with antibody to troponin-C. Nat New Biol. 1973 Aug 1;244(135):154–155. doi: 10.1038/newbio244154a0. [DOI] [PubMed] [Google Scholar]
  12. Sjöström M., Squire J. M. Fine structure of the A-band in cryo-sections. The structure of the A-band of human skeletal muscle fibres from ultra-thin cryo-sections negatively stained. J Mol Biol. 1977 Jan 5;109(1):49–68. doi: 10.1016/s0022-2836(77)80045-4. [DOI] [PubMed] [Google Scholar]
  13. Trinick J., Knight P., Whiting A. Purification and properties of native titin. J Mol Biol. 1984 Dec 5;180(2):331–356. doi: 10.1016/s0022-2836(84)80007-8. [DOI] [PubMed] [Google Scholar]
  14. Wang K. Purification of titin and nebulin. Methods Enzymol. 1982;85(Pt B):264–274. doi: 10.1016/0076-6879(82)85025-8. [DOI] [PubMed] [Google Scholar]
  15. Wang K., Ramirez-Mitchell R. A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle. J Cell Biol. 1983 Feb;96(2):562–570. doi: 10.1083/jcb.96.2.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 1985;6:315–369. doi: 10.1007/978-1-4757-4723-2_10. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES