Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Nov 1;105(5):2245–2256. doi: 10.1083/jcb.105.5.2245

An optional dyadic junctional complex revealed by fast-freeze fixation in the bioluminescent system of the scale worm

PMCID: PMC2114837  PMID: 3680381

Abstract

In the bioluminescent system of the scale worm, the facilitation of the successive flashes is correlated with the progressive recruitment, in each photogenic cell, of new units of activity, the photosomes. To characterize morphologically the coupled state of the photosomes, known to decouple within seconds at rest, fast-freeze fixation was applied to stimulated and nonstimulated elytra and followed by substitution with OsO4 in acetone. The results showed striking differences. Photosomes were surrounded by a new type of smooth endoplasmic reticulum (ER) called intermediate endoplasmic reticulum (IER). In nonstimulated elytra, the IER was most often unattached in the cytoplasm. After stimulation, the IER was connected to large terminal saccules that formed dyad junctions with the plasma membrane. Most of these junctional complexes were symmetrical (triads) and occurred in front of narrow extracellular spaces. These spaces were either constitutive, like invaginations or clefts along adjacent cells and adjacent pouches, or resulted from the pairing of long pseudopods which expanded into a wide extracellular compartment and twisted together in a dynamic process. In that the junctional complexes developed progressively under repeated stimulation and coupled more and more photosomes, they must represent a route constituted by the ER for the propagation of internal conduction. The dynamics of coupling involve membrane growth, recognition, and transformation on a surprisingly large scale and in a surprisingly short time.

Full Text

The Full Text of this article is available as a PDF (6.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassot J. M. A transient intracellular coupling explains the facilitation of responses in the bioluminescent system of scale worms. J Cell Biol. 1987 Nov;105(5):2235–2243. doi: 10.1083/jcb.105.5.2235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassot J. M. Une forme microtubulaire et paracristalline de reticulum endoplasmique dans les photocytes des annelides Polynoinae. J Cell Biol. 1966 Oct;31(1):135–158. doi: 10.1083/jcb.31.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bilbaut A. Cell junctions in the excitable epithelium of bioluminescent scales on a polynoid worm: a freeze-fracture and electrophysiological study. J Cell Sci. 1980 Feb;41:341–368. doi: 10.1242/jcs.41.1.341. [DOI] [PubMed] [Google Scholar]
  4. Dunlap K., Takeda K., Brehm P. Activation of a calcium-dependent photoprotein by chemical signalling through gap junctions. Nature. 1987 Jan 1;325(6099):60–62. doi: 10.1038/325060a0. [DOI] [PubMed] [Google Scholar]
  5. Escaig J., Géraud G., Nicolas G. Congélation rapide de tissus biologiques. Mesure des températures et des vitesses de congélation par thermocouple en couche mince. C R Acad Sci Hebd Seances Acad Sci D. 1977 Jun 13;284(22):2289–2292. [PubMed] [Google Scholar]
  6. Forbes M. S., Hawkey L. A., Jirge S. K., Sperelakis N. The sarcoplasmic reticulum of mouse heart: its divisions, configurations, and distribution. J Ultrastruct Res. 1985 Oct-Nov;93(1-2):1–16. doi: 10.1016/0889-1605(85)90080-1. [DOI] [PubMed] [Google Scholar]
  7. Franzini-Armstrong C., Nunzi G. Junctional feet and particles in the triads of a fast-twitch muscle fibre. J Muscle Res Cell Motil. 1983 Apr;4(2):233–252. doi: 10.1007/BF00712033. [DOI] [PubMed] [Google Scholar]
  8. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Heuser J. E., Reese T. S. Structural changes after transmitter release at the frog neuromuscular junction. J Cell Biol. 1981 Mar;88(3):564–580. doi: 10.1083/jcb.88.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirokawa N., Heuser J. E. Internal and external differentiations of the postsynaptic membrane at the neuromuscular junction. J Neurocytol. 1982 Jun;11(3):487–510. doi: 10.1007/BF01257990. [DOI] [PubMed] [Google Scholar]
  11. Novikoff A. B. The endoplasmic reticulum: a cytochemist's view (a review). Proc Natl Acad Sci U S A. 1976 Aug;73(8):2781–2787. doi: 10.1073/pnas.73.8.2781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Novikoff P. M., Novikoff A. B., Quintana N., Hauw J. J. Golgi apparatus, GERL, and lysosomes of neurons in rat dorsal root ganglia, studied by thick section and thin section cytochemistry. J Cell Biol. 1971 Sep;50(3):859–886. doi: 10.1083/jcb.50.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pathak R. K., Luskey K. L., Anderson R. G. Biogenesis of the crystalloid endoplasmic reticulum in UT-1 cells: evidence that newly formed endoplasmic reticulum emerges from the nuclear envelope. J Cell Biol. 1986 Jun;102(6):2158–2168. doi: 10.1083/jcb.102.6.2158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Somlyo A. V. Bridging structures spanning the junctioning gap at the triad of skeletal muscle. J Cell Biol. 1979 Mar;80(3):743–750. doi: 10.1083/jcb.80.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Sommer J. R., Wallace N. R., Hasselbach W. The collapse of the sarcoplasmic reticulum in skeletal muscle. Z Naturforsch C. 1978 Jul-Aug;33(7-8):561–573. doi: 10.1515/znc-1978-7-819. [DOI] [PubMed] [Google Scholar]
  16. Sommer J. R., Wallace N. R., Junker J. The intermediate cisterna of the sarcoplasmic reticulum of skeletal muscle. J Ultrastruct Res. 1980 May;71(2):126–142. doi: 10.1016/s0022-5320(80)90101-x. [DOI] [PubMed] [Google Scholar]
  17. VANHARREVELD A., CROWELL J. ELECTRON MICROSCOPY AFTER RAPID FREEZING ON A METAL SURFACE AND SUBSTITUTION FIXATION. Anat Rec. 1964 Jul;149:381–385. doi: 10.1002/ar.1091490307. [DOI] [PubMed] [Google Scholar]
  18. VANHARREVELD A., CROWELL J., MALHOTRA S. K. A STUDY OF EXTRACELLULAR SPACE IN CENTRAL NERVOUS TISSUE BY FREEZE-SUBSTITUTION. J Cell Biol. 1965 Apr;25:117–137. doi: 10.1083/jcb.25.1.117. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES