Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Nov 1;105(5):2307–2314. doi: 10.1083/jcb.105.5.2307

Morphology of astroglial cells is controlled by beta-adrenergic receptors

PMCID: PMC2114840  PMID: 2824528

Abstract

Astroglial cells in vivo and in vitro respond to hormones, growth factors, and neurotransmitters by changing from an epithelial-like to stellate morphology. We have studied the temporal relationship between receptor activation, second messenger mobilization, and morphological changes using LRM55 astroglial cells. Maintenance of an altered morphology required continuous beta-adrenergic receptor activation. These changes appeared to be mediated by cAMP since they were elicited by its analogue, dibutyryl cAMP, and by forskolin, a direct activator of adenylate cyclase. Changes in cell morphology may require a relatively small increase in intracellular cAMP, since receptor- stimulated changes in cAMP levels were transient and peaked approximately 5 min after receptor activation while changes in morphology took at least 30 min to reach a new steady state. Time-lapse videomicroscopy and high voltage electron microscopy indicated that receptor activation resulted in a sequence of morphological events. Time-lapse observations revealed the development and enlargement of openings through the cytoplasm associated with cytoplasmic withdrawal to the perinuclear region and process formation. Higher resolution high voltage electron microscopy indicated that the transition to a stellate morphology was preceded by the appearance of two distinct cytoplasmic domains. One contained an open network of filaments and organelles. The other was characterized by short broad cytoplasmic filaments. The first domain was similar to cytoplasm in control cells while the second was associated with the development and enlargement of openings through the cytoplasm and regions of obvious cytoplasmic withdrawal.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Allen N. S., Travis J. L. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1981;1(3):291–302. doi: 10.1002/cm.970010303. [DOI] [PubMed] [Google Scholar]
  2. Awad J. A., Johnson R. A., Jakobs K. H., Schultz G. Interactions of forskolin and adenylate cyclase. Effects on substrate kinetics and protection against inactivation by heat and N-ethylmaleimide. J Biol Chem. 1983 Mar 10;258(5):2960–2965. [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Bridgman P. C., Kachar B., Reese T. S. The structure of cytoplasm in directly frozen cultured cells. II. Cytoplasmic domains associated with organelle movements. J Cell Biol. 1986 Apr;102(4):1510–1521. doi: 10.1083/jcb.102.4.1510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bridgman P. C., Reese T. S. The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmic ground substance. J Cell Biol. 1984 Nov;99(5):1655–1668. doi: 10.1083/jcb.99.5.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Browning E. T., Brostrom C. O., Groppi V. E., Jr Altered adenosine cyclic 3',5'-monophosphate synthesis and degradation by C-6 astrocytoma cells following prolonged exposure to norepinephrine. Mol Pharmacol. 1976 Jan;12(1):32–40. [PubMed] [Google Scholar]
  7. Browning E. T., Ruina M. Glial fibrillary acidic protein: norepinephrine stimulated phosphorylation in intact C-6 glioma cells. J Neurochem. 1984 Mar;42(3):718–726. doi: 10.1111/j.1471-4159.1984.tb02742.x. [DOI] [PubMed] [Google Scholar]
  8. Couchie D., Fages C., Bridoux A. M., Rolland B., Tardy M., Nunez J. Microtubule-associated proteins and in vitro astrocyte differentiation. J Cell Biol. 1985 Dec;101(6):2095–2103. doi: 10.1083/jcb.101.6.2095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Das G. D. Differentiation of Bergmann glia cells in the cerebellum: a golgi study. Brain Res. 1976 Jul 9;110(2):199–213. doi: 10.1016/0006-8993(76)90397-8. [DOI] [PubMed] [Google Scholar]
  10. Dvorak J. A., Stotler W. F. A controlled-environment culture system for high resolution light microscopy. Exp Cell Res. 1971 Sep;68(1):144–148. doi: 10.1016/0014-4827(71)90596-9. [DOI] [PubMed] [Google Scholar]
  11. Ebersolt C., Perez M., Vassent G., Bockaert J. Characteristics of the beta 1-and beta 2-adrenergic-sensitive adenylate cyclases in glial cell primary cultures and their comparison with beta 2-adrenergic-sensitive adenylate cyclase of meningeal cells. Brain Res. 1981 May 25;213(1):151–161. doi: 10.1016/0006-8993(81)91255-5. [DOI] [PubMed] [Google Scholar]
  12. Fedoroff S., McAuley W. A., Houle J. D., Devon R. M. Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. J Neurosci Res. 1984;12(1):14–27. doi: 10.1002/jnr.490120103. [DOI] [PubMed] [Google Scholar]
  13. Haugen A., Laerum O. D. Induced glial differentiation of fetal rat brain cells in culture: an ultrastructural study. Brain Res. 1978 Jul 14;150(2):225–238. doi: 10.1016/0006-8993(78)90277-9. [DOI] [PubMed] [Google Scholar]
  14. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lim R., Mitsunobu K., Li W. K. Maturation-stimulating effect of brain extract and dibutyryl cyclic AMP on dissociated embryonic brain cells in culture. Exp Eye Res. 1973 Apr;79(1):243–246. [PubMed] [Google Scholar]
  16. Lin L., Saller C. F., Salama A. I. Rapid automated high-performance liquid chromatographic analysis of cyclic adenosine 3',5'-monophosphate. Synthesis in brain tissues. J Chromatogr. 1985 May 31;341(1):43–51. [PubMed] [Google Scholar]
  17. Madelian V., Martin D. L., Lepore R., Perrone M., Shain W. Beta-receptor-stimulated and cyclic adenosine 3',5'-monophosphate-mediated taurine release from LRM55 glial cells. J Neurosci. 1985 Dec;5(12):3154–3160. doi: 10.1523/JNEUROSCI.05-12-03154.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. McCarthy K. D., Prime J., Harmon T., Pollenz R. Receptor-mediated phosphorylation of astroglial intermediate filament proteins in cultured astroglia. J Neurochem. 1985 Mar;44(3):723–730. doi: 10.1111/j.1471-4159.1985.tb12875.x. [DOI] [PubMed] [Google Scholar]
  19. Narumi S., Kimelberg H. K., Bourke R. S. Effects of norepinephrine on the morphology and some enzyme activities of primary monolayer cultures from rat brain. J Neurochem. 1978 Dec;31(6):1479–1490. doi: 10.1111/j.1471-4159.1978.tb06575.x. [DOI] [PubMed] [Google Scholar]
  20. Oey J. Noradrealine induces morphological alterations in nucleated and enucleated rat C6 glioma cells. Nature. 1975 Sep 25;257(5524):317–319. doi: 10.1038/257317a0. [DOI] [PubMed] [Google Scholar]
  21. Opler L. A., Makman M. H. Mediation by cyclic AMP of hormone-stimulated glycogenolysis in cultured rat astrocytoma cells. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1140–1145. doi: 10.1016/s0006-291x(72)80093-7. [DOI] [PubMed] [Google Scholar]
  22. Perlmutter L. S., Tweedle C. D., Hatton G. I. Neuronal/glial plasticity in the supraoptic dendritic zone: dendritic bundling and double synapse formation at parturition. Neuroscience. 1984 Nov;13(3):769–779. doi: 10.1016/0306-4522(84)90095-2. [DOI] [PubMed] [Google Scholar]
  23. Pollenz R. S., McCarthy K. D. Analysis of cyclic AMP-dependent changes in intermediate filament protein phosphorylation and cell morphology in cultured astroglia. J Neurochem. 1986 Jul;47(1):9–17. doi: 10.1111/j.1471-4159.1986.tb02824.x. [DOI] [PubMed] [Google Scholar]
  24. Porter K. R., Anderson K. L. The structure of the cytoplasmic matrix preserved by freeze-drying and freeze-substitution. Eur J Cell Biol. 1982 Nov;29(1):83–96. [PubMed] [Google Scholar]
  25. Porter K. R. The cytomatrix: a short history of its study. J Cell Biol. 1984 Jul;99(1 Pt 2):3s–12s. doi: 10.1083/jcb.99.1.3s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Ris H. The cytoplasmic filament system in critical point-dried whole mounts and plastic-embedded sections. J Cell Biol. 1985 May;100(5):1474–1487. doi: 10.1083/jcb.100.5.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Seamon K., Daly J. W. Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem. 1981 Oct 10;256(19):9799–9801. [PubMed] [Google Scholar]
  28. Shain W. G., Martin D. L. Activation of beta-adrenergic receptors stimulates taurine release from glial cells. Cell Mol Neurobiol. 1984 Jun;4(2):191–196. doi: 10.1007/BF00711005. [DOI] [PubMed] [Google Scholar]
  29. Shain W., Madelian V., Martin D. L., Kimelberg H. K., Perrone M., Lepore R. Activation of beta-adrenergic receptors stimulates release of an inhibitory transmitter from astrocytes. J Neurochem. 1986 Apr;46(4):1298–1303. doi: 10.1111/j.1471-4159.1986.tb00653.x. [DOI] [PubMed] [Google Scholar]
  30. Tardy M., Fages C., Rolland B., Bardakdjian J., Gonnard P. Effect of prostaglandins and dibutyryl cyclic AMP on the morphology of cells in primary astroglial cultures and on metabolic enzymes of GABA and glutamate metabolism. Experientia. 1981 Jan 15;37(1):19–21. doi: 10.1007/BF01965545. [DOI] [PubMed] [Google Scholar]
  31. Turner J. N. Introduction to stereo imaging. Methods Cell Biol. 1981;22:1–11. doi: 10.1016/s0091-679x(08)61867-1. [DOI] [PubMed] [Google Scholar]
  32. Tweedle C. D., Hatton G. I. Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states. Brain Res. 1984 Sep 10;309(2):373–376. doi: 10.1016/0006-8993(84)90607-3. [DOI] [PubMed] [Google Scholar]
  33. Tweedle C. D. Ultrastructural manifestations of increased hormone release in the neurohypophysis. Prog Brain Res. 1983;60:259–272. doi: 10.1016/S0079-6123(08)64395-2. [DOI] [PubMed] [Google Scholar]
  34. Van Calker D., Müller M., Hamprecht B. Adrenergic alpha- and beta-receptors expressed by the same cell type in primary culture of perinatal mouse brain. J Neurochem. 1978 Apr;30(4):713–718. doi: 10.1111/j.1471-4159.1978.tb10776.x. [DOI] [PubMed] [Google Scholar]
  35. Wolosewick J. J., Porter K. R. Microtrabecular lattice of the cytoplasmic ground substance. Artifact or reality. J Cell Biol. 1979 Jul;82(1):114–139. doi: 10.1083/jcb.82.1.114. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES