Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Nov 1;105(5):2217–2223. doi: 10.1083/jcb.105.5.2217

The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments

PMCID: PMC2114850  PMID: 3680378

Abstract

Electron microscopy was used to study the positional stability of thick filaments in isometrically contracting skinned rabbit psoas muscle as a function of sarcomere length at 7 degrees C. After calcium activation at a sarcomere length of 2.6 micron, where resting stiffness is low, sarcomeres become nonuniform in length. The dispersion in sarcomere length is complete by the time maximum tension is reached. A-bands generally move from their central position and continue moving toward one of the Z-discs after tension has reached a plateau at its maximum level. The lengths of the thick and thin filaments remain constant during this movement. The extent of A-band movement during contraction depends on the final length of the individual sarcomere. After prolonged activation, all sarcomeres between 1.9 and 2.5 micron long exhibit A-bands that are adjacent to a Z-disc, with no intervening I- band. Sarcomeres 2.6 or 2.7 micron long exhibit a partial movement of A- bands. At longer sarcomere lengths, where the resting stiffness exceeds the slope of the active tension-length relation, the A-bands remain perfectly centered during contraction. Sarcomere symmetry and length uniformity are restored upon relaxation. These results indicate that the central position of the thick filaments in the resting sarcomere becomes unstable upon activation. In addition, they provide evidence that the elastic titin filaments, which join thick filaments to Z- discs, produce almost all of the resting tension in skinned rabbit psoas fibers and act to resist the movement of thick filaments away from the center of the sarcomere during contraction.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bergman R. A. Ultrastructural configuration of sarcomeres in passive and contracted frog sartorius muscle. Am J Anat. 1983 Feb;166(2):209–222. doi: 10.1002/aja.1001660206. [DOI] [PubMed] [Google Scholar]
  2. CARLSEN F., KNAPPEIS G. G., BUCHTHAL F. Ultrastructure of the resting and contracted striated muscle fiber at different degrees of stretch. J Biophys Biochem Cytol. 1961 Oct;11:95–117. doi: 10.1083/jcb.11.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Eisenberg B. R., Eisenberg R. S. The T-SR junction in contracting single skeletal muscle fibers. J Gen Physiol. 1982 Jan;79(1):1–19. doi: 10.1085/jgp.79.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. GALEY F. R. LOCAL CONTRACTION PATTERNS OF STRIATED MUSCLE. J Ultrastruct Res. 1964 Dec;11:389–400. doi: 10.1016/s0022-5320(64)80071-x. [DOI] [PubMed] [Google Scholar]
  5. Gassner D. Myofibrillar interaction of blot immunoaffinity-purified antibodies against native titin as studied by direct immunofluorescence and immunogold staining. Eur J Cell Biol. 1986 Apr;40(2):176–184. [PubMed] [Google Scholar]
  6. Goldman Y. E., Simmons R. M. Control of sarcomere length in skinned muscle fibres of Rana temporaria during mechanical transients. J Physiol. 1984 May;350:497–518. doi: 10.1113/jphysiol.1984.sp015215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gordon A. M., Huxley A. F., Julian F. J. The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol. 1966 May;184(1):170–192. doi: 10.1113/jphysiol.1966.sp007909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HUXLEY A. F., PEACHEY L. D. The maximum length for contraction in vertebrate straiated muscle. J Physiol. 1961 Apr;156:150–165. doi: 10.1113/jphysiol.1961.sp006665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hellam D. C., Podolsky R. J. Force measurements in skinned muscle fibres. J Physiol. 1969 Feb;200(3):807–819. doi: 10.1113/jphysiol.1969.sp008723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hill C., Weber K. Monoclonal antibodies distinguish titins from heart and skeletal muscle. J Cell Biol. 1986 Mar;102(3):1099–1108. doi: 10.1083/jcb.102.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Horowits R., Kempner E. S., Bisher M. E., Podolsky R. J. A physiological role for titin and nebulin in skeletal muscle. Nature. 1986 Sep 11;323(6084):160–164. doi: 10.1038/323160a0. [DOI] [PubMed] [Google Scholar]
  12. Locker R. H., Leet N. G. Histology of highly-stretched beef muscle. I. The fine structure of grossly stretched single fibers. J Ultrastruct Res. 1975 Jul;52(1):64–75. doi: 10.1016/s0022-5320(75)80022-0. [DOI] [PubMed] [Google Scholar]
  13. Magid A., Ting-Beall H. P., Carvell M., Kontis T., Lucaveche C. Connecting filaments, core filaments, and side-struts: a proposal to add three new load-bearing structures to the sliding filament model. Adv Exp Med Biol. 1984;170:307–328. doi: 10.1007/978-1-4684-4703-3_26. [DOI] [PubMed] [Google Scholar]
  14. Maruyama K., Yoshioka T., Higuchi H., Ohashi K., Kimura S., Natori R. Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol. 1985 Dec;101(6):2167–2172. doi: 10.1083/jcb.101.6.2167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PAGE S. G., HUXLEY H. E. FILAMENT LENGTHS IN STRIATED MUSCLE. J Cell Biol. 1963 Nov;19:369–390. doi: 10.1083/jcb.19.2.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. SJOSTRAND F. S. The connections between A- and I-band filaments in striated frog muscle. J Ultrastruct Res. 1962 Oct;7:225–246. doi: 10.1016/s0022-5320(62)90020-5. [DOI] [PubMed] [Google Scholar]
  17. Sjöstrand F. S., Jagendorf-Elfvin M. Ultrastructure studies of the contraction-relaxation cycle of glycerinated rabbit psoas muscle. I. The ultrastructure of glycerinated fibers contracted by treatment with ATP. J Ultrastruct Res. 1967 Feb;17(3):348–378. doi: 10.1016/s0022-5320(67)80054-6. [DOI] [PubMed] [Google Scholar]
  18. Thames M. D., Teichholz L. E., Podolsky R. J. Ionic strength and the contraction kinetics of skinned muscle fibers. J Gen Physiol. 1974 Apr;63(4):509–530. doi: 10.1085/jgp.63.4.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trinick J., Elliott A. Electron microscope studies of thick filaments from vertebrate skeletal muscle. J Mol Biol. 1979 Jun 15;131(1):133–136. doi: 10.1016/0022-2836(79)90304-8. [DOI] [PubMed] [Google Scholar]
  20. Trinick J., Knight P., Whiting A. Purification and properties of native titin. J Mol Biol. 1984 Dec 5;180(2):331–356. doi: 10.1016/s0022-2836(84)80007-8. [DOI] [PubMed] [Google Scholar]
  21. Wang K. Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis. Cell Muscle Motil. 1985;6:315–369. doi: 10.1007/978-1-4757-4723-2_10. [DOI] [PubMed] [Google Scholar]
  22. Wood D. S., Zollman J., Reuben J. P., Brandt P. W. Human skeletal muscle: properties of the "chemically skinned%" fiber. Science. 1975 Mar 21;187(4181):1075–1076. doi: 10.1126/science.187.4181.1075. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES