Abstract
Renin is an aspartyl protease which is highly homologous to the lysosomal aspartyl protease cathepsin D. During its biosynthesis, cathepsin D acquires phosphomannosyl residues that enable it to bind to the mannose 6-phosphate (Man-6-P) receptor and to be targeted to lysosomes. The phosphorylation of lysosomal enzymes by UDP- GlcNAc:lysosomal enzyme N-acetylglucosaminylphosphotransferase (phosphotransferase) occurs by recognition of a protein domain that is thought to be present only on lysosomal enzymes. In order to determine whether renin, being structurally similar to cathepsin D, also acquires phosphomannosyl residues, human renin was expressed from cloned DNA in Xenopus oocytes and a mouse L cell line and its biosynthesis and posttranslational modifications were characterized. In Xenopus oocytes, the majority of the renin remained intracellular and underwent a proteolytic cleavage which removed the propiece. Most of the renin synthesized by oocytes was able to bind to a Man-6-P receptor affinity column (53%, 57%, and 90%, in different experiments), indicating the presence of phosphomannosyl residues. In the L cells, the majority of the renin was secreted but 5-6% of the renin molecules contained phosphomannosyl residues as demonstrated by binding of [35S]methionine- labeled renin to the Man-6-P receptor as well as direct analysis of [2- 3H]mannose-labeled oligosaccharides. Although the level of renin phosphorylation differed greatly between the two cell types examined, these results demonstrate that renin is recognized by the phosphotransferase and suggest that renin contains at least part of the lysosomal protein recognition domain.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cutler D., Lane C., Colman A. Non-parallel kinetics and the role of tissue-specific factors in the secretion of chicken ovalbumin and lysozyme from Xenopus oocytes. J Mol Biol. 1981 Dec 25;153(4):917–931. doi: 10.1016/0022-2836(81)90459-9. [DOI] [PubMed] [Google Scholar]
- Docherty K., Hutton J. C., Steiner D. F. Cathepsin B-related proteases in the insulin secretory granule. J Biol Chem. 1984 May 25;259(10):6041–6044. [PubMed] [Google Scholar]
- Faust P. L., Kornfeld S., Chirgwin J. M. Cloning and sequence analysis of cDNA for human cathepsin D. Proc Natl Acad Sci U S A. 1985 Aug;82(15):4910–4914. doi: 10.1073/pnas.82.15.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faust P. L., Wall D. A., Perara E., Lingappa V. R., Kornfeld S. Expression of human cathepsin D in Xenopus oocytes: phosphorylation and intracellular targeting. J Cell Biol. 1987 Nov;105(5):1937–1945. doi: 10.1083/jcb.105.5.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fritz L. C., Arfsten A. E., Dzau V. J., Atlas S. A., Baxter J. D., Fiddes J. C., Shine J., Cofer C. L., Kushner P., Ponte P. A. Characterization of human prorenin expressed in mammalian cells from cloned cDNA. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4114–4118. doi: 10.1073/pnas.83.12.4114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gabel C. A., Foster S. A. Lysosomal enzyme trafficking in mannose 6-phosphate receptor-positive mouse L-cells: demonstration of a steady state accumulation of phosphorylated acid hydrolases. J Cell Biol. 1986 Mar;102(3):943–950. doi: 10.1083/jcb.102.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galen F. X., Devaux C., Houot A. M., Menard J., Corvol P., Corvol M. T., Gubler M. C., Mounier F., Camilleri J. P. Renin biosynthesis by human tumoral juxtaglomerular cells. Evidences for a renin precursor. J Clin Invest. 1984 Apr;73(4):1144–1155. doi: 10.1172/JCI111300. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griffiths G., Simons K. The trans Golgi network: sorting at the exit site of the Golgi complex. Science. 1986 Oct 24;234(4775):438–443. doi: 10.1126/science.2945253. [DOI] [PubMed] [Google Scholar]
- Hasilik A., Neufeld E. F. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1980 May 25;255(10):4946–4950. [PubMed] [Google Scholar]
- Hasilik A., Waheed A., von Figura K. Enzymatic phosphorylation of lysosomal enzymes in the presence of UDP-N-acetylglucosamine. Absence of the activity in I-cell fibroblasts. Biochem Biophys Res Commun. 1981 Feb 12;98(3):761–767. doi: 10.1016/0006-291x(81)91177-3. [DOI] [PubMed] [Google Scholar]
- Hirose S., Kim S., Miyazaki H., Park Y. S., Murakami K. In vitro biosynthesis of human renin and identification of plasma inactive renin as an activation intermediate. J Biol Chem. 1985 Dec 25;260(30):16400–16405. [PubMed] [Google Scholar]
- Hobart P. M., Fogliano M., O'Connor B. A., Schaefer I. M., Chirgwin J. M. Human renin gene: structure and sequence analysis. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5026–5030. doi: 10.1073/pnas.81.16.5026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imai T., Miyazaki H., Hirose S., Hori H., Hayashi T., Kageyama R., Ohkubo H., Nakanishi S., Murakami K. Cloning and sequence analysis of cDNA for human renin precursor. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7405–7409. doi: 10.1073/pnas.80.24.7405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaplan A., Achord D. T., Sly W. S. Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts. Proc Natl Acad Sci U S A. 1977 May;74(5):2026–2030. doi: 10.1073/pnas.74.5.2026. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lacasse J., Ballak M., Mercure C., Gutkowska J., Chapeau C., Foote S., Ménard J., Corvol P., Cantin M., Genest J. Immunocytochemical localization of renin in juxtaglomerular cells. J Histochem Cytochem. 1985 Apr;33(4):323–332. doi: 10.1177/33.4.3884706. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lang L., Couso R., Kornfeld S. Glycoprotein phosphorylation in simple eucaryotic organisms. Identification of UDP-GlcNAc:glycoprotein N-acetylglucosamine-1-phosphotransferase activity and analysis of substrate specificity. J Biol Chem. 1986 May 15;261(14):6320–6325. [PubMed] [Google Scholar]
- Lang L., Reitman M., Tang J., Roberts R. M., Kornfeld S. Lysosomal enzyme phosphorylation. Recognition of a protein-dependent determinant allows specific phosphorylation of oligosaccharides present on lysosomal enzymes. J Biol Chem. 1984 Dec 10;259(23):14663–14671. [PubMed] [Google Scholar]
- Pinet F., Corvol M. T., Dench F., Bourguignon J., Feunteun J., Menard J., Corvol P. Isolation of renin-producing human cells by transfection with three simian virus 40 mutants. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8503–8507. doi: 10.1073/pnas.82.24.8503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reitman M. L., Kornfeld S. Lysosomal enzyme targeting. N-Acetylglucosaminylphosphotransferase selectively phosphorylates native lysosomal enzymes. J Biol Chem. 1981 Dec 10;256(23):11977–11980. [PubMed] [Google Scholar]
- Reitman M. L., Kornfeld S. UDP-N-acetylglucosamine:glycoprotein N-acetylglucosamine-1-phosphotransferase. Proposed enzyme for the phosphorylation of the high mannose oligosaccharide units of lysosomal enzymes. J Biol Chem. 1981 May 10;256(9):4275–4281. [PubMed] [Google Scholar]
- Rosenfeld M. G., Kreibich G., Popov D., Kato K., Sabatini D. D. Biosynthesis of lysosomal hydrolases: their synthesis in bound polysomes and the role of co- and post-translational processing in determining their subcellular distribution. J Cell Biol. 1982 Apr;93(1):135–143. doi: 10.1083/jcb.93.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sahagian G. G., Gottesman M. M. The predominant secreted protein of transformed murine fibroblasts carries the lysosomal mannose 6-phosphate recognition marker. J Biol Chem. 1982 Sep 25;257(18):11145–11150. [PubMed] [Google Scholar]
- Tang J. Evolution in the structure and function of carboxyl proteases. Mol Cell Biochem. 1979 Jul 31;26(2):93–109. doi: 10.1007/BF00232887. [DOI] [PubMed] [Google Scholar]
- Taugner R., Whalley A., Angermüller S., Bührle C. P., Hackenthal E. Are the renin-containing granules of juxtaglomerular epithelioid cells modified lysosomes? Cell Tissue Res. 1985;239(3):575–587. doi: 10.1007/BF00219236. [DOI] [PubMed] [Google Scholar]
- Varki A., Kornfeld S. Structural studies of phosphorylated high mannose-type oligosaccharides. J Biol Chem. 1980 Nov 25;255(22):10847–10858. [PubMed] [Google Scholar]
- Varki A., Kornfeld S. The spectrum of anionic oligosaccharides released by endo-beta-N-acetylglucosaminidase H from glycoproteins. Structural studies and interactions with the phosphomannosyl receptor. J Biol Chem. 1983 Mar 10;258(5):2808–2818. [PubMed] [Google Scholar]
- Wall D. A., Meleka I. An unusual lysosome compartment involved in vitellogenin endocytosis by Xenopus oocytes. J Cell Biol. 1985 Nov;101(5 Pt 1):1651–1664. doi: 10.1083/jcb.101.5.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yeo K. T., Parent J. B., Yeo T. K., Olden K. Variability in transport rates of secretory glycoproteins through the endoplasmic reticulum and Golgi in human hepatoma cells. J Biol Chem. 1985 Jul 5;260(13):7896–7902. [PubMed] [Google Scholar]
