Abstract
The retinal cones of teleost fish contract at dawn and elongate at dusk. We have previously reported that we can selectively induce detergent-lysed models of cones to undergo either reactivated contraction or reactivated elongation, with rates and morphology comparable to those observed in vivo. Reactivated contraction is ATP dependent, activated by Ca2+, and inhibited by cAMP. In addition, reactivated cone contraction exhibits several properties that suggest that myosin phosphorylation plays a role in mediating Ca2+-activation (Porrello, K., and B. Burnside, 1984, J. Cell Biol., 98:2230-2238). We report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with trypsin-digested, unregulated myosin light chain kinase (MLCK) obtained from smooth muscle. This observation provides further evidence that MLCK plays a role in regulating cone contraction. We also report here that lysed cone models can be induced to contract in the absence of Ca2+ by incubation with high concentrations of MgCl2 (10-20 mM). Mg2+-induced reactivated contraction is supported by inosine triphosphate (ITP) just as well as by ATP. Because ITP will not serve as a substrate for MLCK, this finding suggests that Mg2+-activation of contraction does not require myosin phosphorylation. Although Ca2+-induced contraction is completely blocked by cAMP at concentrations less than 10 microM, cAMP has no effect on cone contraction activated by unregulated MLCK or by high Mg2+ in the absence of Ca2+. Because trypsin digestion of MLCK cleaves off not only the Ca2+/calmodulin-binding site but also the site phosphorylated by cAMP-dependent protein kinase, and because Mg2+ activation of cone contraction circumvents MLCK action altogether, both these observations would be expected if cAMP inhibits reactivated cone contraction by catalyzing the phosphorylation of MLCK and thus reducing its affinity for Ca2+, as has been described for smooth muscle. Together our results suggest that in lysed cone models, myosin phosphorylation is sufficient for activating cone contraction, even in the absence of other Ca2+-mediated events, that cAMP inhibition of contraction is mediated by cAMP-dependent phosphorylation of MLCK, and that 10-20 mM Mg2+ can activate actin-myosin interaction to produce contraction in the absence of myosin phosphorylation.
Full Text
The Full Text of this article is available as a PDF (699.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Conti M. A. Phosphorylation of platelet myosin increases actin-activated myosin ATPase activity. Nature. 1975 Aug 14;256(5518):597–598. doi: 10.1038/256597a0. [DOI] [PubMed] [Google Scholar]
- Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
- Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem. 1981 Jul 25;256(14):7501–7509. [PubMed] [Google Scholar]
- Adelstein R. S., Pato M. D., Sellers J. R., de Lanerolle P., Conti M. A. Regulation of actin-myosin interaction by reversible phosphorylation of myosin and myosin kinase. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):921–928. doi: 10.1101/sqb.1982.046.01.086. [DOI] [PubMed] [Google Scholar]
- Bretscher A., Lynch W. Identification and localization of immunoreactive forms of caldesmon in smooth and nonmuscle cells: a comparison with the distributions of tropomyosin and alpha-actinin. J Cell Biol. 1985 May;100(5):1656–1663. doi: 10.1083/jcb.100.5.1656. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Broschat K. O., Stidwill R. P., Burgess D. R. Phosphorylation controls brush border motility by regulating myosin structure and association with the cytoskeleton. Cell. 1983 Dec;35(2 Pt 1):561–571. doi: 10.1016/0092-8674(83)90190-3. [DOI] [PubMed] [Google Scholar]
- Burnside B., Evans M., Fletcher R. T., Chader G. J. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate. J Gen Physiol. 1982 May;79(5):759–774. doi: 10.1085/jgp.79.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnside B., Smith B., Nagata M., Porrello K. Reactivation of contraction in detergent-lysed teleost retinal cones. J Cell Biol. 1982 Jan;92(1):199–206. doi: 10.1083/jcb.92.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cande W. Z., Tooth P. J., Kendrick-Jones J. Regulation of contraction and thick filament assembly-disassembly in glycerinated vertebrate smooth muscle cells. J Cell Biol. 1983 Oct;97(4):1062–1071. doi: 10.1083/jcb.97.4.1062. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cassidy P., Kerrick W. G. Superprecipitation of gizzard actomyosin, and tension in gizzard muscle skinned fibers in the presence of nucleotides other than ATP. Biochim Biophys Acta. 1982 Jul 12;705(1):63–69. doi: 10.1016/0167-4838(82)90336-3. [DOI] [PubMed] [Google Scholar]
- Cole H. A., Grand R. J., Perry S. V. Non-correlation of phosphorylation of the P-light chain and the actin activation of the ATPase of chicken gizzard myosin. Biochem J. 1982 Aug 15;206(2):319–328. doi: 10.1042/bj2060319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Craig R., Smith R., Kendrick-Jones J. Light-chain phosphorylation controls the conformation of vertebrate non-muscle and smooth muscle myosin molecules. 1983 Mar 31-Apr 6Nature. 302(5907):436–439. doi: 10.1038/302436a0. [DOI] [PubMed] [Google Scholar]
- Dearry A., Burnside B. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas. J Gen Physiol. 1984 Apr;83(4):589–611. doi: 10.1085/jgp.83.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dingus J., Hwo S., Bryan J. Identification by monoclonal antibodies and characterization of human platelet caldesmon. J Cell Biol. 1986 May;102(5):1748–1757. doi: 10.1083/jcb.102.5.1748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fechheimer M., Cebra J. J. Phosphorylation of lymphocyte myosin catalyzed in vitro and in intact cells. J Cell Biol. 1982 May;93(2):261–268. doi: 10.1083/jcb.93.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox J. E., Phillips D. R. Role of phosphorylation in mediating the association of myosin with the cytoskeletal structures of human platelets. J Biol Chem. 1982 Apr 25;257(8):4120–4126. [PubMed] [Google Scholar]
- Hirokawa N., Tilney L. G., Fujiwara K., Heuser J. E. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J Cell Biol. 1982 Aug;94(2):425–443. doi: 10.1083/jcb.94.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikebe M., Barsotti R. J., Hinkins S., Hartshorne D. J. Effects of magnesium chloride on smooth muscle actomyosin adenosine-5'-triphosphatase activity, myosin conformation, and tension development in glycerinated smooth muscle fibers. Biochemistry. 1984 Oct 9;23(21):5062–5068. doi: 10.1021/bi00316a036. [DOI] [PubMed] [Google Scholar]
- Ikebe M., Hartshorne D. J. Conformation-dependent proteolysis of smooth-muscle myosin. J Biol Chem. 1984 Oct 10;259(19):11639–11642. [PubMed] [Google Scholar]
- Ikebe M., Hartshorne D. J. Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: preparation of heavy meromyosin and subfragment 1 with intact 20 000-dalton light chains. Biochemistry. 1985 Apr 23;24(9):2380–2387. doi: 10.1021/bi00330a038. [DOI] [PubMed] [Google Scholar]
- Ikebe M., Hinkins S., Hartshorne D. J. Correlation of enzymatic properties and conformation of smooth muscle myosin. Biochemistry. 1983 Sep 13;22(19):4580–4587. doi: 10.1021/bi00288a036. [DOI] [PubMed] [Google Scholar]
- Keller T. C., 3rd, Conzelman K. A., Chasan R., Mooseker M. S. Role of myosin in terminal web contraction in isolated intestinal epithelial brush borders. J Cell Biol. 1985 May;100(5):1647–1655. doi: 10.1083/jcb.100.5.1647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller T. C., 3rd, Mooseker M. S. Ca++-calmodulin-dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J Cell Biol. 1982 Dec;95(3):943–959. doi: 10.1083/jcb.95.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kendrick-Jones J., Cande W. Z., Tooth P. J., Smith R. C., Scholey J. M. Studies on the effect of phosphorylation of the 20,000 Mr light chain of vertebrate smooth muscle myosin. J Mol Biol. 1983 Mar 25;165(1):139–162. doi: 10.1016/s0022-2836(83)80247-2. [DOI] [PubMed] [Google Scholar]
- Kerrick W. G., Bourguignon L. Y. Regulation of receptor capping in mouse lymphoma T cells by Ca2+-activated myosin light chain kinase. Proc Natl Acad Sci U S A. 1984 Jan;81(1):165–169. doi: 10.1073/pnas.81.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerrick W. G., Hoar P. E. Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature. 1981 Jul 16;292(5820):253–255. doi: 10.1038/292253a0. [DOI] [PubMed] [Google Scholar]
- Masuda H., Owaribe K., Hayashi H., Hatano S. Ca2+-dependent contraction of human lung fibroblasts treated with Triton X-100: a role of Ca2+-calmodulin-dependent phosphorylation of myosin 20,000-dalton light chain. Cell Motil. 1984;4(5):315–331. doi: 10.1002/cm.970040503. [DOI] [PubMed] [Google Scholar]
- Matsumura S., Murakami N., Yasuda S., Kumon A. Phosphorylation of the bovine brain myosin. Biochem Biophys Res Commun. 1982 Oct 29;108(4):1595–1600. doi: 10.1016/s0006-291x(82)80090-9. [DOI] [PubMed] [Google Scholar]
- Nachmias V. T., Kavaler J., Jacubowitz S. Reversible association of myosin with the platelet cytoskeleton. Nature. 1985 Jan 3;313(5997):70–72. doi: 10.1038/313070a0. [DOI] [PubMed] [Google Scholar]
- Ngai P. K., Walsh M. P. Inhibition of smooth muscle actin-activated myosin Mg2+-ATPase activity by caldesmon. J Biol Chem. 1984 Nov 25;259(22):13656–13659. [PubMed] [Google Scholar]
- Persechini A., Mrwa U., Hartshorne D. J. Effect of phosphorylation on the actin-activated ATPase activity of myosin. Biochem Biophys Res Commun. 1981 Feb 12;98(3):800–805. doi: 10.1016/0006-291x(81)91182-7. [DOI] [PubMed] [Google Scholar]
- Pires E. M., Perry S. V. Purification and properties of myosin light-chain kinase from fast skeletal muscle. Biochem J. 1977 Oct 1;167(1):137–146. doi: 10.1042/bj1670137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porrello K., Burnside B. Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate. J Cell Biol. 1984 Jun;98(6):2230–2238. doi: 10.1083/jcb.98.6.2230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porrello K., Cande W. Z., Burnside B. N-ethylmaleimide-modified subfragment-1 and heavy meromyosin inhibit reactivated contraction in motile models of retinal cones. J Cell Biol. 1983 Feb;96(2):449–454. doi: 10.1083/jcb.96.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sobue K., Tanaka T., Kanda K., Ashino N., Kakiuchi S. Purification and characterization of caldesmon77: a calmodulin-binding protein that interacts with actin filaments from bovine adrenal medulla. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5025–5029. doi: 10.1073/pnas.82.15.5025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki H., Kamata T., Onishi H., Watanabe S. Adenosine triphosphate-induced reversible change in the conformation of chicken gizzard myosin and heavy meromyosin. J Biochem. 1982 May;91(5):1699–1705. doi: 10.1093/oxfordjournals.jbchem.a133861. [DOI] [PubMed] [Google Scholar]
- Trotter J. A., Adelstein R. S. Macrophage myosin. Regulation of actin-activated ATPase, activity by phosphorylation of the 20,000-dalton light chain. J Biol Chem. 1979 Sep 25;254(18):8781–8785. [PubMed] [Google Scholar]
- Trybus K. M., Lowey S. Conformational states of smooth muscle myosin. Effects of light chain phosphorylation and ionic strength. J Biol Chem. 1984 Jul 10;259(13):8564–8571. [PubMed] [Google Scholar]
- Walsh M. P., Bridenbaugh R., Hartshorne D. J., Kerrick W. G. Phosphorylation-dependent activated tension in skinned gizzard muscle fibers in the absence of Ca2+. J Biol Chem. 1982 Jun 10;257(11):5987–5990. [PubMed] [Google Scholar]
- Walsh M. P., Dabrowska R., Hinkins S., Hartshorne D. J. Calcium-independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification, and characterization. Biochemistry. 1982 Apr 13;21(8):1919–1925. doi: 10.1021/bi00537a034. [DOI] [PubMed] [Google Scholar]
- Walters M., Marston S. B. Phosphorylation of the calcium ion-regulated thin filaments from vascular smooth muscle. A new regulatory mechanism? Biochem J. 1981 Jul 1;197(1):127–139. doi: 10.1042/bj1970127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yerna M. J., Aksoy M. O., Hartshorne D. J., Goldman R. D. BHK21 myosin: isolation, biochemical characterization and intracellular localization. J Cell Sci. 1978 Jun;31:411–429. doi: 10.1242/jcs.31.1.411. [DOI] [PubMed] [Google Scholar]
