Abstract
We have studied the F-actin network in cycling suspension culture cells of carrot (Daucus carota L.) using rhodaminyl lysine phallotoxin (RLP). In addition to conventional fixation with formaldehyde, we have used two different nonfixation methods before adding RLP: extracting cells in a stabilizing buffer; inducing transient pores in the plasma membrane with pulses of direct current (electroporation). These alternative methods for introducing RLP revealed additional features of the actin network not seen in aldehyde-fixed cells. The three- dimensional organization of this network in nonflattened cells was demonstrated by projecting stereopairs derived from through-focal series of computer-enhanced images. F-actin is present in interphase cells in four interconnected configurations: a meshwork surrounding the nucleus; thick cables in transvacuolar strands and deep in the cytoplasm; a finer network of bundles within the cortical cytoplasm; even finer filaments that run in ordered transverse array around the cell periphery. The actin network is organized differently during division but it does not disappear as do the cortical microtubules. RLP stains a central filamentous cortical band as the chromatin begins to condense (preprophase); it stains the mitotic spindle (as recently shown by Seagull et al. [Seagull, R. W., M. Falconer, and C. A. Weerdenburg, 1987, J. Cell Biol., 104:995-1004] for aldehyde fixed suspension cells) and the cytokinetic apparatus (as shown by Clayton, L., and C. W. Lloyd, 1985, Exp. Cell Res., 156:231-238). However, it is now shown that an additional network of F-actin persists in the cytoplasm throughout division associating in turn with the preprophase band, the mitotic spindle, and the cytokinetic phragmoplast.
Full Text
The Full Text of this article is available as a PDF (3.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. J., Pollard T. D. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature. 1986 Aug 21;322(6081):754–756. doi: 10.1038/322754a0. [DOI] [PubMed] [Google Scholar]
- Agard D. A. Optical sectioning microscopy: cellular architecture in three dimensions. Annu Rev Biophys Bioeng. 1984;13:191–219. doi: 10.1146/annurev.bb.13.060184.001203. [DOI] [PubMed] [Google Scholar]
- Aubin J. E., Weber K., Osborn M. Analysis of actin and microfilament-associated proteins in the mitotic spindle and cleavage furrow of PtK2 cells by immunofluorescence microscopy. A critical note. Exp Cell Res. 1979 Nov;124(1):93–109. doi: 10.1016/0014-4827(79)90260-x. [DOI] [PubMed] [Google Scholar]
- Barak L. S., Yocum R. R., Nothnagel E. A., Webb W. W. Fluorescence staining of the actin cytoskeleton in living cells with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin. Proc Natl Acad Sci U S A. 1980 Feb;77(2):980–984. doi: 10.1073/pnas.77.2.980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown R. M., Jr Cellulose microfibril assembly and orientation: recent developments. J Cell Sci Suppl. 1985;2:13–32. doi: 10.1242/jcs.1985.supplement_2.2. [DOI] [PubMed] [Google Scholar]
- Cande W. Z., Lazarides E., McIntosh J. R. A comparison of the distribution of actin and tubulin in the mammalian mitotic spindle as seen by indirect immunofluorescence. J Cell Biol. 1977 Mar;72(3):552–567. doi: 10.1083/jcb.72.3.552. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clayton L., Lloyd C. W. Actin organization during the cell cycle in meristematic plant cells. Actin is present in the cytokinetic phragmoplast. Exp Cell Res. 1985 Jan;156(1):231–238. doi: 10.1016/0014-4827(85)90277-0. [DOI] [PubMed] [Google Scholar]
- Dawson P. J., Hulme J. S., Lloyd C. W. Monoclonal antibody to intermediate filament antigen cross-reacts with higher plant cells. J Cell Biol. 1985 May;100(5):1793–1798. doi: 10.1083/jcb.100.5.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Forer A., Jackson W. T. Actin in spindles of Haemanthus katherinae endosperm. I. General results using various glycerination methods. J Cell Sci. 1979 Jun;37:323–347. doi: 10.1242/jcs.37.1.323. [DOI] [PubMed] [Google Scholar]
- Forer A., Jackson W. T., Engberg A. Actin in spindles of Haemanthus katherinae endosperm. II. Distribution of actin in chromosomal spindle fibres, determined by analysis of serial sections. J Cell Sci. 1979 Jun;37:349–371. doi: 10.1242/jcs.37.1.349. [DOI] [PubMed] [Google Scholar]
- Gicquaud C., Gruda J., Pollender J. M. La phalloïdine protège la F-actine contre les effets destructeurs de l'acide osmique et du permanganate. Eur J Cell Biol. 1980 Feb;20(3):234–239. [PubMed] [Google Scholar]
- Griffith L. M., Pollard T. D. The interaction of actin filaments with microtubules and microtubule-associated proteins. J Biol Chem. 1982 Aug 10;257(15):9143–9151. [PubMed] [Google Scholar]
- Gunning B. E., Wick S. M. Preprophase bands, phragmoplasts, and spatial control of cytokinesis. J Cell Sci Suppl. 1985;2:157–179. doi: 10.1242/jcs.1985.supplement_2.9. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kersken H., Momayezi M., Braun C., Plattner H. Filamentous actin in paramecium cells: functional and structural changes correlated with phalloidin affinity labeling in vivo. J Histochem Cytochem. 1986 Apr;34(4):455–465. doi: 10.1177/34.4.3512697. [DOI] [PubMed] [Google Scholar]
- Lehrer S. S. Damage to actin filaments by glutaraldehyde: protection by tropomyosin. J Cell Biol. 1981 Aug;90(2):459–466. doi: 10.1083/jcb.90.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lloyd C. W., Lowe S. B., Peace G. W. The mode of action of 2,4-D in counteracting the elongation of carrot cells grown in culture. J Cell Sci. 1980 Oct;45:257–268. doi: 10.1242/jcs.45.1.257. [DOI] [PubMed] [Google Scholar]
- Maupin P., Pollard T. D. Improved preservation and staining of HeLa cell actin filaments, clathrin-coated membranes, and other cytoplasmic structures by tannic acid-glutaraldehyde-saponin fixation. J Cell Biol. 1983 Jan;96(1):51–62. doi: 10.1083/jcb.96.1.51. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Menzel D., Schliwa M. Motility in the siphonous green alga Bryopsis. II. Chloroplast movement requires organized arrays of both microtubules and actin filaments. Eur J Cell Biol. 1986 Apr;40(2):286–295. [PubMed] [Google Scholar]
- Osborn M., Weber K. Dimethylsulfoxide and the ionophore A23187 affect the arrangement of actin and induce nuclear actin paracrystals in PtK2 cells. Exp Cell Res. 1980 Sep;129(1):103–114. doi: 10.1016/0014-4827(80)90335-3. [DOI] [PubMed] [Google Scholar]
- Osborn M., Weber K. Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol. 1982;24:97–132. doi: 10.1016/s0091-679x(08)60650-0. [DOI] [PubMed] [Google Scholar]
- Palevitz B. A., Ash J. F., Hepler P. K. Actin in the green alga, Nitella. Proc Natl Acad Sci U S A. 1974 Feb;71(2):363–366. doi: 10.1073/pnas.71.2.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paulin-Levasseur M., Gicquaud C. Observation des structures contractiles dans le cytoplasme démembranè d'Amoeba proteus après traitement à phalloïdine. Eur J Cell Biol. 1981 Dec;26(1):144–149. [PubMed] [Google Scholar]
- Pesacreta T. C., Carley W. W., Webb W. W., Parthasarathy M. V. F-actin in conifer roots. Proc Natl Acad Sci U S A. 1982 May;79(9):2898–2901. doi: 10.1073/pnas.79.9.2898. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Selden S. C., Maupin P. Interaction of actin filaments with microtubules. J Cell Biol. 1984 Jul;99(1 Pt 2):33s–37s. doi: 10.1083/jcb.99.1.33s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sattilaro R. F., Dentler W. L., LeCluyse E. L. Microtubule-associated proteins (MAPs) and the organization of actin filaments in vitro. J Cell Biol. 1981 Aug;90(2):467–473. doi: 10.1083/jcb.90.2.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seagull R. W., Falconer M. M., Weerdenburg C. A. Microfilaments: dynamic arrays in higher plant cells. J Cell Biol. 1987 Apr;104(4):995–1004. doi: 10.1083/jcb.104.4.995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seagull R. W., Heath I. B. The effects of tannic acid on the in vivo preservation of microfilaments. Eur J Cell Biol. 1979 Dec;20(2):184–188. [PubMed] [Google Scholar]
- Small J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol. 1981 Dec;91(3 Pt 1):695–705. doi: 10.1083/jcb.91.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traas J. A., Braat P., Derksen J. W. Changes in microtubule arrays during the differentiation of cortical root cells of Raphanus sativus. Eur J Cell Biol. 1984 Jul;34(2):229–238. [PubMed] [Google Scholar]
- Traas J. A., Braat P., Emons A. M., Meekes H., Derksen J. Microtubules in root hairs. J Cell Sci. 1985 Jun;76:303–320. doi: 10.1242/jcs.76.1.303. [DOI] [PubMed] [Google Scholar]
- Watts J. W., King J. M. A simple method for large-scale electrofusion and culture of plant protoplasts. Biosci Rep. 1984 Apr;4(4):335–342. doi: 10.1007/BF01140497. [DOI] [PubMed] [Google Scholar]
- Wehland J., Weber K. Actin rearrangement in living cells revealed by microinjection of a fluorescent phalloidin derivative. Eur J Cell Biol. 1981 Jun;24(2):176–183. [PubMed] [Google Scholar]
- Wick S. M., Duniec J. Immunofluorescence microscopy of tubulin and microtubule arrays in plant cells. I. Preprophase band development and concomitant appearance of nuclear envelope-associated tubulin. J Cell Biol. 1983 Jul;97(1):235–243. doi: 10.1083/jcb.97.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]
