Abstract
Eubacterium sp. strain VPI 12708 is a human intestinal isolate which has an inducible bile acid 7-dehydroxylation activity. At least two cholic acid-induced polypeptides, with molecular masses of 27,000 and 45,000 daltons, respectively, coelute with bile acid 7-dehydroxylation activity. The 45,000-dalton polypeptide appears to be encoded by a cholic acid-induced mRNA species of greater than 6 kilobases, which suggests that the gene coding for this polypeptide is part of a larger operon. A gene has been cloned which flanks the gene encoding the 45,000-dalton polypeptide, in the upstream (5') direction. This gene appears to encode a second 27,000-dalton polypeptide. The gene bears striking homology at both the nucleotide (80%) and deduced amino acid sequence (89%) levels with the gene which encodes the 27,000-dalton polypeptide that has been shown previously to be involved in the bile acid 7-dehydroxylation reaction sequence. The implications of this homology and the possible function(s) of the two homologous genes in bile acid 7-dehydroxylation are discussed. Evidence is presented which suggests that the two homologous genes involved in bile acid 7-dehydroxylation may be part of a larger multigene family in Eubacterium sp. strain VPI 12708.
Full text
PDF![4555](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ad/211490/5ea0d427ec86/jbacter00188-0137.png)
![4556](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ad/211490/e27d3b774469/jbacter00188-0138.png)
![4557](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ad/211490/edff0c1d9cce/jbacter00188-0139.png)
![4558](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ad/211490/b6d59898d318/jbacter00188-0140.png)
![4559](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ad/211490/d00ba9b46625/jbacter00188-0141.png)
![4560](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ad/211490/25298d00013d/jbacter00188-0142.png)
![4561](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b0ad/211490/5bf4432033c2/jbacter00188-0143.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alam J., Whitaker R. A., Krogmann D. W., Curtis S. E. Isolation and sequence of the gene for ferredoxin I from the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol. 1986 Dec;168(3):1265–1271. doi: 10.1128/jb.168.3.1265-1271.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagheri S. A., Bolt M. G., Boyer J. L., Palmer R. H. Stimulation of thymidine incorporation in mouse liver and biliary tract epithelium by lithocholate and deoxycholate. Gastroenterology. 1978 Feb;74(2 Pt 1):188–192. [PubMed] [Google Scholar]
- Coleman J. P., White W. B., Egestad B., Sjövall J., Hylemon P. B. Biosynthesis of a novel bile acid nucleotide and mechanism of 7 alpha-dehydroxylation by an intestinal Eubacterium species. J Biol Chem. 1987 Apr 5;262(10):4701–4707. [PubMed] [Google Scholar]
- Coleman J. P., White W. B., Hylemon P. B. Molecular cloning of bile acid 7-dehydroxylase from Eubacterium sp. strain VPI 12708. J Bacteriol. 1987 Apr;169(4):1516–1521. doi: 10.1128/jb.169.4.1516-1521.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coleman J. P., White W. B., Lijewski M., Hylemon P. B. Nucleotide sequence and regulation of a gene involved in bile acid 7-dehydroxylation by Eubacterium sp. strain VPI 12708. J Bacteriol. 1988 May;170(5):2070–2077. doi: 10.1128/jb.170.5.2070-2077.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jany K. D., Ulmer W., Fröschle M., Pfleiderer G. Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium. FEBS Lett. 1984 Jan 2;165(1):6–10. doi: 10.1016/0014-5793(84)80003-4. [DOI] [PubMed] [Google Scholar]
- Jörnvall H., von Bahr-Lindström H., Jany K. D., Ulmer W., Fröschle M. Extended superfamily of short alcohol-polyol-sugar dehydrogenases: structural similarities between glucose and ribitol dehydrogenases. FEBS Lett. 1984 Jan 9;165(2):190–196. doi: 10.1016/0014-5793(84)80167-2. [DOI] [PubMed] [Google Scholar]
- Kelsey M. I., Pienta R. J. Transformation of hamster embryo cells by cholesterol-alpha-epoxide and lithocholic acid. Cancer Lett. 1979 Mar;6(3):143–149. doi: 10.1016/s0304-3835(79)80025-7. [DOI] [PubMed] [Google Scholar]
- Kulkarni M. S., Heidepriem P. M., Yielding K. L. Production by lithocholic acid of DNA strand breaks in L1210 cells. Cancer Res. 1980 Aug;40(8 Pt 1):2666–2669. [PubMed] [Google Scholar]
- Low-Beer T. S., Nutter S. Colonic bacterial activity, biliary cholesterol saturation, and pathogenesis of gallstones. Lancet. 1978 Nov 18;2(8099):1063–1065. doi: 10.1016/s0140-6736(78)91800-7. [DOI] [PubMed] [Google Scholar]
- Messing J. New M13 vectors for cloning. Methods Enzymol. 1983;101:20–78. doi: 10.1016/0076-6879(83)01005-8. [DOI] [PubMed] [Google Scholar]
- Narisawa T., Magadia N. E., Weisburger J. H., Wynder E. L. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitrosoguanidine in rats. J Natl Cancer Inst. 1974 Oct;53(4):1093–1097. doi: 10.1093/jnci/53.4.1093. [DOI] [PubMed] [Google Scholar]
- Paone D. A., Hylemon P. B. HPLC purification and preparation of antibodies to cholic acid-inducible polypeptides from Eubacterium sp. V.P.I. 12708. J Lipid Res. 1984 Dec 1;25(12):1343–1349. [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
- Thatcher D. R. The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes (AdhN-11, AdhS and AdhUF) from the fruitfly Drosophila melanogaster. Biochem J. 1980 Jun 1;187(3):875–883. doi: 10.1042/bj1870875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- White B. A., Cacciapuoti A. F., Fricke R. J., Whitehead T. R., Mosbach E. H., Hylemon P. B. Cofactor requiremets for 7 alpha-dehydroxylation of cholic and chenodeoxycholic acid in cell extracts of the intestinal anaerobic bacterium, Eubacterium species V.P.I. 13708. J Lipid Res. 1981 Aug;22(6):891–898. [PubMed] [Google Scholar]
- White B. A., Lipsky R. L., Fricke R. J., Hylemon P. B. Bile acid induction specificity of 7 alpha-dehydroxylase activity in an intestinal Eubacterium species. Steroids. 1980 Jan;35(1):103–109. doi: 10.1016/0039-128x(80)90115-4. [DOI] [PubMed] [Google Scholar]
- White W. B., Coleman J. P., Hylemon P. B. Molecular cloning of a gene encoding a 45,000-dalton polypeptide associated with bile acid 7-dehydroxylation in Eubacterium sp. strain VPI 12708. J Bacteriol. 1988 Feb;170(2):611–616. doi: 10.1128/jb.170.2.611-616.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanisch-Perron C., Vieira J., Messing J. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene. 1985;33(1):103–119. doi: 10.1016/0378-1119(85)90120-9. [DOI] [PubMed] [Google Scholar]