Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):49–56. doi: 10.1083/jcb.105.1.49

The structure of calsequestrin in triads of vertebrate skeletal muscle: a deep-etch study

PMCID: PMC2114915  PMID: 3497158

Abstract

We have examined the structure of calsequestrin in three-dimensional images from deep-etched rotary-replicated freeze fractures of skeletal muscle fibers. We selected a fast-acting muscle because the sarcoplasmic reticulum has an orderly disposition and is rich in internal membranes. Calsequestrin forms a network in the center of the terminal cisternae and is anchored to the sarcoplasmic reticulum membrane, with preference for the junctional portion. The anchorage is responsible for maintaining calsequestrin in the region of the sarcoplasmic reticulum close to the calcium-release channels, and it corroborates the finding that calsequestrin and the spanning protein of the junctional feet may interact with each other in the junctional membrane. Anchoring filaments may be composed of a protein other than calsequestrin.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunschwig J. P., Brandt N., Caswell A. H., Lukeman D. S. Ultrastructural observations of isolated intact and fragmented junctions of skeletal muscle by use of tannic acid mordanting. J Cell Biol. 1982 Jun;93(3):533–542. doi: 10.1083/jcb.93.3.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cadwell J. J., Caswell A. H. Identification of a constituent of the junctional feet linking terminal cisternae to transverse tubules in skeletal muscle. J Cell Biol. 1982 Jun;93(3):543–550. doi: 10.1083/jcb.93.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cala S. E., Jones L. R. Rapid purification of calsequestrin from cardiac and skeletal muscle sarcoplasmic reticulum vesicles by Ca2+-dependent elution from phenyl-sepharose. J Biol Chem. 1983 Oct 10;258(19):11932–11936. [PubMed] [Google Scholar]
  4. Campbell K. P., Franzini-Armstrong C., Shamoo A. E. Further characterization of light and heavy sarcoplasmic reticulum vesicles. Identification of the 'sarcoplasmic reticulum feet' associated with heavy sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1980 Oct 16;602(1):97–116. doi: 10.1016/0005-2736(80)90293-x. [DOI] [PubMed] [Google Scholar]
  5. Campbell K. P., MacLennan D. H., Jorgensen A. O., Mintzer M. C. Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein. J Biol Chem. 1983 Jan 25;258(2):1197–1204. [PubMed] [Google Scholar]
  6. Campbell K. P., MacLennan D. H., Jorgensen A. O. Staining of the Ca2+-binding proteins, calsequestrin, calmodulin, troponin C, and S-100, with the cationic carbocyanine dye "Stains-all". J Biol Chem. 1983 Sep 25;258(18):11267–11273. [PubMed] [Google Scholar]
  7. Campbell K. P., MacLennan D. H. Purification and characterization of the 53,000-dalton glycoprotein from the sarcoplasmic reticulum. J Biol Chem. 1981 May 10;256(9):4626–4632. [PubMed] [Google Scholar]
  8. Caswell A. H., Brunschwig J. P. Identification and extraction of proteins that compose the triad junction of skeletal muscle. J Cell Biol. 1984 Sep;99(3):929–939. doi: 10.1083/jcb.99.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Corbett A. M., Caswell A. H., Brandt N. R., Brunschwig J. P. Determinants of triad junction reformation: identification and isolation of an endogenous promotor for junction reformation in skeletal muscle. J Membr Biol. 1985;86(3):267–276. doi: 10.1007/BF01870606. [DOI] [PubMed] [Google Scholar]
  10. Costello B., Chadwick C., Saito A., Chu A., Maurer A., Fleischer S. Characterization of the junctional face membrane from terminal cisternae of sarcoplasmic reticulum. J Cell Biol. 1986 Sep;103(3):741–753. doi: 10.1083/jcb.103.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cozens B., Reithmeier R. A. Size and shape of rabbit skeletal muscle calsequestrin. J Biol Chem. 1984 May 25;259(10):6248–6252. [PubMed] [Google Scholar]
  12. Dulhunty A., Valois A. Indentations in the terminal cisternae of amphibian and mammalian skeletal muscle fibers. J Ultrastruct Res. 1983 Jul;84(1):34–49. doi: 10.1016/s0022-5320(83)90084-9. [DOI] [PubMed] [Google Scholar]
  13. Eisenberg B. R., Gilai A. Structural changes in single muscle fibers after stimulation at a low frequency. J Gen Physiol. 1979 Jul;74(1):1–16. doi: 10.1085/jgp.74.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  15. Ferguson D. G., Schwartz H. W., Franzini-Armstrong C. Subunit structure of junctional feet in triads of skeletal muscle: a freeze-drying, rotary-shadowing study. J Cell Biol. 1984 Nov;99(5):1735–1742. doi: 10.1083/jcb.99.5.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Franzini-Armstrong C. Membrane particles and transmission at the triad. Fed Proc. 1975 Apr;34(5):1382–1389. [PubMed] [Google Scholar]
  17. Franzini-Armstrong C., Nunzi G. Junctional feet and particles in the triads of a fast-twitch muscle fibre. J Muscle Res Cell Motil. 1983 Apr;4(2):233–252. doi: 10.1007/BF00712033. [DOI] [PubMed] [Google Scholar]
  18. Herbette L., Marquardt J., Scarpa A., Blasie J. K. A direct analysis of lamellar x-ray diffraction from hydrated oriented multilayers of fully functional sarcoplasmic reticulum. Biophys J. 1977 Nov;20(2):245–272. doi: 10.1016/S0006-3495(77)85547-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Johnson E. A., Sommer J. R. A strand of cardiac muscle. Its ultrastructure and the electrophysiological implications of its geometry. J Cell Biol. 1967 Apr;33(1):103–129. doi: 10.1083/jcb.33.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jorgensen A. O., Kalnins V., MacLennan D. H. Localization of sarcoplasmic reticulum proteins in rat skeletal muscle by immunofluorescence. J Cell Biol. 1979 Feb;80(2):372–384. doi: 10.1083/jcb.80.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jorgensen A. O., Shen A. C., Campbell K. P., MacLennan D. H. Ultrastructural localization of calsequestrin in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol. 1983 Nov;97(5 Pt 1):1573–1581. doi: 10.1083/jcb.97.5.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jorgensen A. O., Shen A. C., MacLennan D. H., Tokuyasu K. T. Ultrastructural localization of the Ca2+ + Mg2+-dependent ATPase of sarcoplasmic reticulum in rat skeletal muscle by immunoferritin labeling of ultrathin frozen sections. J Cell Biol. 1982 Feb;92(2):409–416. doi: 10.1083/jcb.92.2.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kawamoto R. M., Brunschwig J. P., Kim K. C., Caswell A. H. Isolation, characterization, and localization of the spanning protein from skeletal muscle triads. J Cell Biol. 1986 Oct;103(4):1405–1414. doi: 10.1083/jcb.103.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kelly D. E., Kuda A. M. Subunits of the triadic junction in fast skeletal muscle as revealed by freeze-fracture. J Ultrastruct Res. 1979 Aug;68(2):220–233. doi: 10.1016/s0022-5320(79)90156-4. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Lau Y. H., Caswell A. H., Brunschwig J. P. Isolation of transverse tubules by fractionation of triad junctions of skeletal muscle. J Biol Chem. 1977 Aug 10;252(15):5565–5574. [PubMed] [Google Scholar]
  27. MacLennan D. H., Wong P. T. Isolation of a calcium-sequestering protein from sarcoplasmic reticulum. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1231–1235. doi: 10.1073/pnas.68.6.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maurer A., Tanaka M., Ozawa T., Fleischer S. Purification and crystallization of the calcium binding protein of sarcoplasmic reticulum from skeletal muscle. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4036–4040. doi: 10.1073/pnas.82.12.4036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Meissner G., Conner G. E., Fleischer S. Isolation of sarcoplasmic reticulum by zonal centrifugation and purification of Ca 2+ -pump and Ca 2+ -binding proteins. Biochim Biophys Acta. 1973 Mar 16;298(2):246–269. doi: 10.1016/0005-2736(73)90355-6. [DOI] [PubMed] [Google Scholar]
  30. Meissner G. Isolation and characterization of two types of sarcoplasmic reticulum vesicles. Biochim Biophys Acta. 1975 Apr 21;389(1):51–68. doi: 10.1016/0005-2736(75)90385-5. [DOI] [PubMed] [Google Scholar]
  31. Meissner G. Ryanodine activation and inhibition of the Ca2+ release channel of sarcoplasmic reticulum. J Biol Chem. 1986 May 15;261(14):6300–6306. [PubMed] [Google Scholar]
  32. Mitchell R. D., Saito A., Palade P., Fleischer S. Morphology of isolated triads. J Cell Biol. 1983 Apr;96(4):1017–1029. doi: 10.1083/jcb.96.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Nassar R., Wallace N. R., Taylor I., Sommer J. R. The quick-freezing of single intact skeletal muscle fibers at known time intervals following electrical stimulation. Scan Electron Microsc. 1986;(Pt 1):309–328. [PubMed] [Google Scholar]
  34. Rayns D. G., Simpson F. O., Bertaud W. S. Surface features of striated muscle. II. Guinea-pig skeletal muscle. J Cell Sci. 1968 Dec;3(4):475–482. doi: 10.1242/jcs.3.4.475. [DOI] [PubMed] [Google Scholar]
  35. Saito A., Seiler S., Chu A., Fleischer S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J Cell Biol. 1984 Sep;99(3):875–885. doi: 10.1083/jcb.99.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Seiler S., Wegener A. D., Whang D. D., Hathaway D. R., Jones L. R. High molecular weight proteins in cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles bind calmodulin, are phosphorylated, and are degraded by Ca2+-activated protease. J Biol Chem. 1984 Jul 10;259(13):8550–8557. [PubMed] [Google Scholar]
  37. Smith J. S., Coronado R., Meissner G. Sarcoplasmic reticulum contains adenine nucleotide-activated calcium channels. Nature. 1985 Aug 1;316(6027):446–449. doi: 10.1038/316446a0. [DOI] [PubMed] [Google Scholar]
  38. Smith J. S., Coronado R., Meissner G. Single channel measurements of the calcium release channel from skeletal muscle sarcoplasmic reticulum. Activation by Ca2+ and ATP and modulation by Mg2+. J Gen Physiol. 1986 Nov;88(5):573–588. doi: 10.1085/jgp.88.5.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Somlyo A. V. Bridging structures spanning the junctioning gap at the triad of skeletal muscle. J Cell Biol. 1979 Mar;80(3):743–750. doi: 10.1083/jcb.80.3.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Somlyo A. V., Shuman H., Somlyo A. P. Elemental distribution in striated muscle and the effects of hypertonicity. Electron probe analysis of cryo sections. J Cell Biol. 1977 Sep;74(3):828–857. doi: 10.1083/jcb.74.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Volpe P., Gutweniger H. E., Montecucco C. Photolabeling of the integral proteins of skeletal muscle sarcoplasmic reticulum: comparison of junctional and nonjunctional membrane fractions. Arch Biochem Biophys. 1987 Feb 15;253(1):138–145. doi: 10.1016/0003-9861(87)90646-1. [DOI] [PubMed] [Google Scholar]
  42. Walker S. M., Schrodt G. R., Edge M. B. The density attached to the inside surface of the apposed sarcoplasmic reticular membrane in vertebrate cardiac and skeletal muscle fibres. J Anat. 1971 Feb;108(Pt 2):217–230. [PMC free article] [PubMed] [Google Scholar]
  43. Waugh R. A., Sommer J. R. Lamellar junctional sarcoplasmic reticulum. A specialization of cardiac sarcoplasmic reticulum. J Cell Biol. 1974 Oct;63(1):337–343. doi: 10.1083/jcb.63.1.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Zorzato F., Margreth A., Volpe P. Direct photoaffinity labeling of junctional sarcoplasmic reticulum with [14C]doxorubicin. J Biol Chem. 1986 Oct 5;261(28):13252–13257. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES