Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):93–103. doi: 10.1083/jcb.105.1.93

Synaptonemal complex antigen location and conservation

PMCID: PMC2114919  PMID: 2440900

Abstract

The axial cores of chromosomes in the meiotic prophase nuclei of most sexually reproducing organisms play a pivotal role in the arrangement of chromatin, in the synapsis of homologous chromosomes, in the process of genetic recombination, and in the disjunction of chromosomes. We report an immunogold analysis of the axial cores and the synaptonemal complexes (SC) using two mouse monoclonal antibodies raised against isolated rat SCs. In Western blots of purified SCs, antibody II52F10 recognizes a 30- and a 33-kD peptide (Heyting, C., P. B. Moens, W. van Raamsdonk, A. J. J. Dietrich, A. C. G. Vink, and E. J. W. Redeker, 1987, Eur. J. Cell Biol., 43: 148-154). In spreads of rat spermatocyte nuclei it produces gold grains over the cores of autosomal and sex chromosomes. The cores label lightly during the chromosome pairing stage (zygotene) of early meiotic prophase and they become more intensely labeled when they are parallel aligned as the lateral elements of the SC during pachytene (55 grains/micron SC). Statistical analysis of electronically recorded gold grain positions shows that the two means of the bimodal gold grain distribution coincide with the centers of the lateral elements. At diplotene, when the cores separate, the antigen is still detected along the length of the core and the enlarged ends are heavily labeled. Shadow-cast SC preparations show that recombination nodules are not labeled. The continued presence suggests that the antigens serve a continuing function in the cores, such as chromatin binding, and/or structural integrity. Antibody III15B8, which does not recognize the 30- and 33-kD peptides, produces gold grains predominantly between the lateral elements. The grain distribution is bimodal with the mean of each peak just inside the pairing face of the lateral element. The antigen is present where and while the cores of the homologous chromosomes are paired. From the location and the timing, it is assumed that the antigen recognized by III15B8 functions in chromosome pairing at meiotic prophase. The two anti-rat SC antibodies label rat and mouse SCs but not rabbit or dog SCs. A positive control using human CREST (calcinosis, Raynaud's phenomenon, esophageal dysmotility, sclerodactyly, telangiectasia) anti- centromere serum gives equivalent labeling of SC centromeres in the rat, mouse, rabbit, and dog. It is concluded that the SC antigens recognized by II52F10 and III15B8 are not widely conserved. The two antibodies do not bind to cellular or nuclear components of somatic cells.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (4.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner S., Pepper D., Berns M. W., Tan E., Brinkley B. R. Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J Cell Biol. 1981 Oct;91(1):95–102. doi: 10.1083/jcb.91.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Counce S. J., Meyer G. F. Differentiation of the synaptonemal complex and the kinetochore in Locusta spermatocytes studied by whole mount electron microscopy. Chromosoma. 1973 Nov 21;44(2):231–253. doi: 10.1007/BF00329119. [DOI] [PubMed] [Google Scholar]
  3. De Martino C., Capanna E., Nicotra M. R., Natali P. G. Immunochemical localization of contractile proteins in mammalian meiotic chromosomes. Cell Tissue Res. 1980;213(1):159–178. doi: 10.1007/BF00236928. [DOI] [PubMed] [Google Scholar]
  4. Dresser M. E., Moses M. J. Synaptonemal complex karyotyping in spermatocytes of the Chinese hamster (Cricetulus griseus). IV. Light and electron microscopy of synapsis and nucleolar development by silver staining. Chromosoma. 1980;76(1):1–22. doi: 10.1007/BF00292222. [DOI] [PubMed] [Google Scholar]
  5. Dym M., Fawcett D. W. The blood-testis barrier in the rat and the physiological compartmentation of the seminiferous epithelium. Biol Reprod. 1970 Dec;3(3):308–326. doi: 10.1093/biolreprod/3.3.308. [DOI] [PubMed] [Google Scholar]
  6. Earnshaw W. C., Halligan N., Cooke C., Rothfield N. The kinetochore is part of the metaphase chromosome scaffold. J Cell Biol. 1984 Jan;98(1):352–357. doi: 10.1083/jcb.98.1.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Eldred W. D., Zucker C., Karten H. J., Yazulla S. Comparison of fixation and penetration enhancement techniques for use in ultrastructural immunocytochemistry. J Histochem Cytochem. 1983 Feb;31(2):285–292. doi: 10.1177/31.2.6339606. [DOI] [PubMed] [Google Scholar]
  8. Fiil A., Moens P. B. The development, structure and function of modified synaptonemal complexes in mosquito oocytes. Chromosoma. 1973;41(1):37–62. doi: 10.1007/BF00284073. [DOI] [PubMed] [Google Scholar]
  9. Haskins E. F., Hinchee A. A., Cloney R. A. The occurrence of synaptonemal complexes in the slime mold Echinostelium minutum de Bary. J Cell Biol. 1971 Dec;51(3):898–903. doi: 10.1083/jcb.51.3.898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heyting C., Dietrich A. J., Redeker E. J., Vink A. C. Structure and composition of synaptonemal complexes, isolated from rat spermatocytes. Eur J Cell Biol. 1985 Mar;36(2):307–314. [PubMed] [Google Scholar]
  11. Heyting C., Moens P. B., van Raamsdonk W., Dietrich A. J., Vink A. C., Redeker E. J. Identification of two major components of the lateral elements of synaptonemal complexes of the rat. Eur J Cell Biol. 1987 Feb;43(1):148–154. [PubMed] [Google Scholar]
  12. Ierardi L. A., Moss S. B., Bellvé A. R. Synaptonemal complexes are integral components of the isolated mouse spermatocyte nuclear matrix. J Cell Biol. 1983 Jun;96(6):1717–1726. doi: 10.1083/jcb.96.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Joseph A. M., Chandley A. C. The morphological sequence of XY pairing in the Norway rat Rattus norvegicus. Chromosoma. 1984;89(5):381–386. doi: 10.1007/BF00331256. [DOI] [PubMed] [Google Scholar]
  14. MOSES M. J. The relation between the axial complex of meiotic prophase chromosomes and chromosome pairing in a salamander (Plethodon cinereus). J Biophys Biochem Cytol. 1958 Sep 25;4(5):633–638. doi: 10.1083/jcb.4.5.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Moens P. B. Lateral element cross connections of the synaptonemal complex and their relationship to chiasmata in rat spermatocytes. Can J Genet Cytol. 1978 Dec;20(4):567–579. doi: 10.1139/g78-066. [DOI] [PubMed] [Google Scholar]
  16. Moens P. B., Rapport E. Synaptic structures in the nuclei of sporulating yeast, Saccharomyces cerevisiae (Hansen). J Cell Sci. 1971 Nov;9(3):665–677. doi: 10.1242/jcs.9.3.665. [DOI] [PubMed] [Google Scholar]
  17. Moens P. B. The fine structure of meiotic chromosome polarization and pairing in Locusta migratoria spermatocytes. Chromosoma. 1969;28(1):1–25. doi: 10.1007/BF00325986. [DOI] [PubMed] [Google Scholar]
  18. Moses M. J., Dresser M. E., Poorman P. A. Composition and role of the synaptonemal complex. Symp Soc Exp Biol. 1984;38:245–270. [PubMed] [Google Scholar]
  19. Rasmussen S. W. Ultrastructural studies of spermatogenesis in Drosophila melanogaster Meigen. Z Zellforsch Mikrosk Anat. 1973 Jun 20;140(1):125–144. doi: 10.1007/BF00307062. [DOI] [PubMed] [Google Scholar]
  20. Rattner J. B., Goldsmith M. R., Hamkalo B. A. Chromosome organization during male meiosis in Bombyx mori. Chromosoma. 1981;82(3):341–351. doi: 10.1007/BF00285760. [DOI] [PubMed] [Google Scholar]
  21. SOTELO J. R., WETTSTEIN R. ELECTRON MICROSCOPE STUDY ON MEIOSIS. THE SEX CHROMOSOME IN SPERMATOCYTES, SPERMATIDS AND OOCYTES OF GRYLLUS ARGENTINUS. Chromosoma. 1964 Sep 22;15:389–415. doi: 10.1007/BF00368139. [DOI] [PubMed] [Google Scholar]
  22. Solari A. J. The spatial relationship of the X and Y chromosomes during meiotic prophase in mouse spermatocytes. Chromosoma. 1970;29(2):217–236. doi: 10.1007/BF00326080. [DOI] [PubMed] [Google Scholar]
  23. Spyropoulos B., Moens P. B. The synaptonemal complex: does it have contractile proteins? Can J Genet Cytol. 1984 Dec;26(6):776–781. doi: 10.1139/g84-123. [DOI] [PubMed] [Google Scholar]
  24. Zickler D. Fine structure of chromosome pairing in ten Ascomycetes: meiotic and premeiotic (mitotic) synaptonemal complexes. Chromosoma. 1973;40(4):401–416. doi: 10.1007/BF00399431. [DOI] [PubMed] [Google Scholar]
  25. von Wettstein D., Rasmussen S. W., Holm P. B. The synaptonemal complex in genetic segregation. Annu Rev Genet. 1984;18:331–413. doi: 10.1146/annurev.ge.18.120184.001555. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES