Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):77–92. doi: 10.1083/jcb.105.1.77

A three-dimensional approach to mitotic chromosome structure: evidence for a complex hierarchical organization

PMCID: PMC2114920  PMID: 3112167

Abstract

We describe findings on the architecture of Drosophila melanogaster mitotic chromosomes, made using a three-dimensional-oriented structural approach. Using high-voltage and conventional transmission electron microscopy combined with axial tomography and digital contrast- enhancement techniques, we have for the first time visualized significant structural detail within minimally perturbed mitotic chromosomes. Chromosomes prepared by several different preparative procedures showed a consistent size hierarchy of discrete chromatin structural domains with cross-sectional diameters of 120, 240, 400-500, and 800-1,000 A. In fully condensed, metaphase-arrested chromosomes, there is evidence for even larger-scale structural organization in the range of 1,300-3,000-A size. The observed intrachromosomal arrangements of these higher-order structural domains show that both the radial loop and sequential helical coiling models of chromosome structure are over- simplifications of the true situation. Finally, our results suggest that the pathway of chromatin condensation through mitosis consists of concurrent changes occurring at several levels of chromatin organization, rather than a strictly sequential folding process.

Full Text

The Full Text of this article is available as a PDF (7.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adolph K. W. Organization of chromosomes in mitotic HeLa cells. Exp Cell Res. 1980 Jan;125(1):95–103. doi: 10.1016/0014-4827(80)90193-7. [DOI] [PubMed] [Google Scholar]
  2. Agard D. A., Stroud R. M. Linking regions between helices in bacteriorhodopsin revealed. Biophys J. 1982 Mar;37(3):589–602. [PMC free article] [PubMed] [Google Scholar]
  3. Bak A. L., Zeuthen J., Crick F. H. Higher-order structure of human mitotic chromosomes. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1595–1599. doi: 10.1073/pnas.74.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bak A. L., Zeuthen J. Higher-order structure of mitotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):367–377. doi: 10.1101/sqb.1978.042.01.038. [DOI] [PubMed] [Google Scholar]
  5. Blumenthal A. B., Dieden J. D., Kapp L. N., Sedat J. W. Rapid isolation of metaphase chromosomes containing high molecular weight DNA. J Cell Biol. 1979 Apr;81(1):255–259. doi: 10.1083/jcb.81.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daskal Y., Mace M. L., Jr, Wray W., Busch H. Use of direct current sputtering for improved visualization of chromosome topology by scanning electron microscopy. Exp Cell Res. 1976 Jun;100(1):204–212. doi: 10.1016/0014-4827(76)90343-8. [DOI] [PubMed] [Google Scholar]
  7. Earnshaw W. C., Heck M. M. Localization of topoisomerase II in mitotic chromosomes. J Cell Biol. 1985 May;100(5):1716–1725. doi: 10.1083/jcb.100.5.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Earnshaw W. C., Laemmli U. K. Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol. 1983 Jan;96(1):84–93. doi: 10.1083/jcb.96.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Foe V. E., Alberts B. M. Studies of nuclear and cytoplasmic behaviour during the five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci. 1983 May;61:31–70. doi: 10.1242/jcs.61.1.31. [DOI] [PubMed] [Google Scholar]
  10. Gordon R., Herman G. T. Three-dimensional reconstruction from projections: a review of algorithms. Int Rev Cytol. 1974;38(0):111–151. doi: 10.1016/s0074-7696(08)60925-0. [DOI] [PubMed] [Google Scholar]
  11. Harrison C. J., Allen T. D., Britch M., Harris R. High-resolution scanning electron microscopy of human metaphase chromosomes. J Cell Sci. 1982 Aug;56:409–422. doi: 10.1242/jcs.56.1.409. [DOI] [PubMed] [Google Scholar]
  12. Iino A. Observations on human somatic chromosomes treated with hyaluronidase. Cytogenetics. 1971;10(4):286–294. doi: 10.1159/000130148. [DOI] [PubMed] [Google Scholar]
  13. Marsden M. P., Laemmli U. K. Metaphase chromosome structure: evidence for a radial loop model. Cell. 1979 Aug;17(4):849–858. doi: 10.1016/0092-8674(79)90325-8. [DOI] [PubMed] [Google Scholar]
  14. Mullinger A. M., Johnson R. T. Packing DNA into chromosomes. J Cell Sci. 1980 Dec;46:61–86. doi: 10.1242/jcs.46.1.61. [DOI] [PubMed] [Google Scholar]
  15. Mullinger A. M., Johnson R. T. Units of chromosome replication and packing. J Cell Sci. 1983 Nov;64:179–193. doi: 10.1242/jcs.64.1.179. [DOI] [PubMed] [Google Scholar]
  16. Ohnuki Y. Structure of chromosomes. I. Morphological studies of the spiral structure of human somatic chromosomes. Chromosoma. 1968;25(4):402–428. doi: 10.1007/BF02327721. [DOI] [PubMed] [Google Scholar]
  17. Okada T. A., Comings D. E. Higher order structure of chromosomes. Chromosoma. 1979 Apr 5;72(1):1–14. doi: 10.1007/BF00286426. [DOI] [PubMed] [Google Scholar]
  18. Olins A. L., Olins D. E., Levy H. A., Durfee R. C., Margle S. M., Tinnel E. P., Hingerty B. E., Dover S. D., Fuchs H. Modeling Balbiani Ring gene transcription with electron microscope tomography. Eur J Cell Biol. 1984 Sep;35(1):129–142. [PubMed] [Google Scholar]
  19. Paulson J. R., Laemmli U. K. The structure of histone-depleted metaphase chromosomes. Cell. 1977 Nov;12(3):817–828. doi: 10.1016/0092-8674(77)90280-x. [DOI] [PubMed] [Google Scholar]
  20. Ramachandran G. N., Lakshminarayanan A. V. Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of Fourier transforms. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2236–2240. doi: 10.1073/pnas.68.9.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rattner J. B., Lin C. C. Radial loops and helical coils coexist in metaphase chromosomes. Cell. 1985 Aug;42(1):291–296. doi: 10.1016/s0092-8674(85)80124-0. [DOI] [PubMed] [Google Scholar]
  22. Ris H. Stereoscopic electron microscopy of chromosomes. Methods Cell Biol. 1981;22:77–96. doi: 10.1016/s0091-679x(08)61871-3. [DOI] [PubMed] [Google Scholar]
  23. Sedat J., Manuelidis L. A direct approach to the structure of eukaryotic chromosomes. Cold Spring Harb Symp Quant Biol. 1978;42(Pt 1):331–350. doi: 10.1101/sqb.1978.042.01.035. [DOI] [PubMed] [Google Scholar]
  24. Skaer R. J., Whytock S. Chromatin-like artifacts from nuclear sap. J Cell Sci. 1977 Aug;26:301–310. doi: 10.1242/jcs.26.1.301. [DOI] [PubMed] [Google Scholar]
  25. Skaer R. J., Whytock S. The fixation of nuclei and chromosomes. J Cell Sci. 1976 Jan;20(1):221–231. doi: 10.1242/jcs.20.1.221. [DOI] [PubMed] [Google Scholar]
  26. Skoglund U., Andersson K., Strandberg B., Daneholt B. Three-dimensional structure of a specific pre-messenger RNP particle established by electron microscope tomography. Nature. 1986 Feb 13;319(6054):560–564. doi: 10.1038/319560a0. [DOI] [PubMed] [Google Scholar]
  27. Stubblefield E., Wray W. Architecture of the Chinese hamster metaphase chromosome. Chromosoma. 1971;32(3):262–294. doi: 10.1007/BF00284839. [DOI] [PubMed] [Google Scholar]
  28. Subirana J. A., Muñoz-Guerra S., Aymamí J., Radermacher M., Frank J. The layered organization of nucleosomes in 30 nm chromatin fibers. Chromosoma. 1985;91(5):377–390. doi: 10.1007/BF00291012. [DOI] [PubMed] [Google Scholar]
  29. Woodcock C. L., Frado L. L., Rattner J. B. The higher-order structure of chromatin: evidence for a helical ribbon arrangement. J Cell Biol. 1984 Jul;99(1 Pt 1):42–52. doi: 10.1083/jcb.99.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zalokar M., Erk I. Phase-partition fixation and staining of Drosophila eggs. Stain Technol. 1977 Mar;52(2):89–95. doi: 10.3109/10520297709116753. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES