Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):441–448. doi: 10.1083/jcb.105.1.441

The role of extracellular matrix in the migration and differentiation of parietal endoderm from teratocarcinoma embryoid bodies

PMCID: PMC2114921  PMID: 2956269

Abstract

Embryoid bodies formed from teratocarcinoma stem cells differentiate an outer layer consisting of parietal and visceral endoderm or of visceral endoderm exclusively. We have previously shown that when these embryoid bodies are plated on collagen-coated substrates a parietal endoderm- like cell migrates onto the substrate, whereas all of the visceral endoderm remains associated with the stem cell mass, suggesting a role for substrate contact in parietal endoderm differentiation. We now identify fibronectin as the migration-promoting component in these cultures, and note that laminin and collagen type IV are 10-fold less effective at promoting both attachment and endoderm outgrowth. The RGDS tetrapeptide (arg-gly-asp-ser) from the cell attachment domain of fibronectin can specifically block attachment and outgrowth on both fibronectin- and laminin-coated substrates. In addition, the involvement of the 140-kD fibronectin receptor is demonstrated using an antibody directed against this molecule.

Full Text

The Full Text of this article is available as a PDF (2.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamson E. D., Ayers S. E. The localization and synthesis of some collagen types in developing mouse embryos. Cell. 1979 Apr;16(4):953–965. doi: 10.1016/0092-8674(79)90110-7. [DOI] [PubMed] [Google Scholar]
  2. Adamson E. D., Evans M. J., Magrane G. G. Biochemical markers of the progress of differentiation in cloned teratocarcinoma cell lines. Eur J Biochem. 1977 Oct 3;79(2):607–615. doi: 10.1111/j.1432-1033.1977.tb11845.x. [DOI] [PubMed] [Google Scholar]
  3. Akiyama S. K., Yamada S. S., Yamada K. M. Characterization of a 140-kD avian cell surface antigen as a fibronectin-binding molecule. J Cell Biol. 1986 Feb;102(2):442–448. doi: 10.1083/jcb.102.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown P. J., Juliano R. L. Expression and function of a putative cell surface receptor for fibronectin in hamster and human cell lines. J Cell Biol. 1986 Oct;103(4):1595–1603. doi: 10.1083/jcb.103.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown P. J., Juliano R. L. Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell-surface glycoprotein. Science. 1985 Jun 21;228(4706):1448–1451. doi: 10.1126/science.4012302. [DOI] [PubMed] [Google Scholar]
  6. Cooper A. R., Taylor A., Hogan B. L. Changes in the rate of laminin and entactin synthesis in F9 embryonal carcinoma cells treated with retinoic acid and cyclic amp. Dev Biol. 1983 Oct;99(2):510–516. doi: 10.1016/0012-1606(83)90300-7. [DOI] [PubMed] [Google Scholar]
  7. Damsky C. H., Richa J., Solter D., Knudsen K., Buck C. A. Identification and purification of a cell surface glycoprotein mediating intercellular adhesion in embryonic and adult tissue. Cell. 1983 Sep;34(2):455–466. doi: 10.1016/0092-8674(83)90379-3. [DOI] [PubMed] [Google Scholar]
  8. Duband J. L., Rocher S., Chen W. T., Yamada K. M., Thiery J. P. Cell adhesion and migration in the early vertebrate embryo: location and possible role of the putative fibronectin receptor complex. J Cell Biol. 1986 Jan;102(1):160–178. doi: 10.1083/jcb.102.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gardner R. L. Origin and differentiation of extraembryonic tissues in the mouse. Int Rev Exp Pathol. 1983;24:63–133. [PubMed] [Google Scholar]
  10. Grabel L. B., Casanova J. E. The outgrowth of parietal endoderm from mouse teratocarcinoma stem-cell embryoid bodies. Differentiation. 1986;32(1):67–73. doi: 10.1111/j.1432-0436.1986.tb00557.x. [DOI] [PubMed] [Google Scholar]
  11. Grabel L. B., Martin G. R. Tunicamycin reversibly inhibits the terminal differentiation of teratocarcinoma stem cells to endoderm. Dev Biol. 1983 Jan;95(1):115–125. doi: 10.1016/0012-1606(83)90011-8. [DOI] [PubMed] [Google Scholar]
  12. Grabel L. B., Singer M. S., Martin G. R., Rosen S. D. Teratocarcinoma stem cell adhesion: the role of divalent cations and a cell surface lectin. J Cell Biol. 1983 Jun;96(6):1532–1537. doi: 10.1083/jcb.96.6.1532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hatta K., Takeichi M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature. 1986 Apr 3;320(6061):447–449. doi: 10.1038/320447a0. [DOI] [PubMed] [Google Scholar]
  14. Horwitz A., Duggan K., Greggs R., Decker C., Buck C. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol. 1985 Dec;101(6):2134–2144. doi: 10.1083/jcb.101.6.2134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hyafil F., Morello D., Babinet C., Jacob F. A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell. 1980 Oct;21(3):927–934. doi: 10.1016/0092-8674(80)90456-0. [DOI] [PubMed] [Google Scholar]
  16. Klebe R. J. Isolation of a collagen-dependent cell attachment factor. Nature. 1974 Jul 19;250(463):248–251. doi: 10.1038/250248a0. [DOI] [PubMed] [Google Scholar]
  17. Kleineke J., Söling H. D. Mitochondrial and extramitochondrial Ca2+ pools in the perfused rat liver. Mitochondria are not the origin of calcium mobilized by vasopressin. J Biol Chem. 1985 Jan 25;260(2):1040–1045. [PubMed] [Google Scholar]
  18. Le Douarin N. M. Cell migrations in embryos. Cell. 1984 Sep;38(2):353–360. doi: 10.1016/0092-8674(84)90490-2. [DOI] [PubMed] [Google Scholar]
  19. Leivo I., Vaheri A., Timpl R., Wartiovaara J. Appearance and distribution of collagens and laminin in the early mouse embryo. Dev Biol. 1980 Apr;76(1):100–114. doi: 10.1016/0012-1606(80)90365-6. [DOI] [PubMed] [Google Scholar]
  20. Martin G. R., Evans M. J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1441–1445. doi: 10.1073/pnas.72.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Newgreen D., Thiery J. P. Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res. 1980;211(2):269–291. doi: 10.1007/BF00236449. [DOI] [PubMed] [Google Scholar]
  22. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  23. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  24. Ruoslahti E., Hayman E. G., Pierschbacher M., Engvall E. Fibronectin: purification, immunochemical properties, and biological activities. Methods Enzymol. 1982;82(Pt A):803–831. doi: 10.1016/0076-6879(82)82103-4. [DOI] [PubMed] [Google Scholar]
  25. Ruoslahti E., Pierschbacher M. D. Arg-Gly-Asp: a versatile cell recognition signal. Cell. 1986 Feb 28;44(4):517–518. doi: 10.1016/0092-8674(86)90259-x. [DOI] [PubMed] [Google Scholar]
  26. Solter D., Knowles B. B. Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1). Proc Natl Acad Sci U S A. 1978 Nov;75(11):5565–5569. doi: 10.1073/pnas.75.11.5565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thiery J. P. Mechanisms of cell migration in the vertebrate embryo. Cell Differ. 1984 Nov;15(1):1–15. doi: 10.1016/0045-6039(84)90024-1. [DOI] [PubMed] [Google Scholar]
  28. Wartiovaara J., Leivo I., Vaheri A. Expression of the cell surface-associated glycoprotein, fibronectin, in the early mouse embryo. Dev Biol. 1979 Mar;69(1):247–257. doi: 10.1016/0012-1606(79)90289-6. [DOI] [PubMed] [Google Scholar]
  29. Wolfe J., Mautner V., Hogan B., Tilly R. Synthesis and retention of fibronectin (LETS protein) by mouse teratocarcinoma cells. Exp Cell Res. 1979 Jan;118(1):63–71. doi: 10.1016/0014-4827(79)90584-6. [DOI] [PubMed] [Google Scholar]
  30. Yoshida C., Takeichi M. Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell. 1982 Feb;28(2):217–224. doi: 10.1016/0092-8674(82)90339-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES