Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):9–18. doi: 10.1083/jcb.105.1.9

Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals from Torpedo marmorata

PMCID: PMC2114922  PMID: 3611197

Abstract

The binding sites on the nicotinic acetylcholine receptor of labels specific for the alpha-, beta-, and delta-subunits were determined by electron image analysis, using tubular crystals of receptors grown from the postsynaptic membranes of Torpedo marmorata electric organ. The labels were alpha-bungarotoxin (which attaches to the acetylcholine binding sites on the pair of alpha-subunits), Fab35 (a monoclonal antibody Fab fragment directed against the main immunogenic region of the alpha-subunit), Fab111 (a monoclonal antibody Fab fragment directed against a cytoplasmic site on the beta-subunit), and wheat germ agglutinin (which binds to N-acetylglucosamine residues on the delta- subunit). These labels, bound to receptors in the crystals, were located by comparing labeled with native structures, averaged in each case over more than 5,000 molecules. From the assignments made, we find that the clockwise arrangement of subunits around the receptor, viewed from the synaptic face, is: alpha, beta, alpha, gamma, and delta; that the main immunogenic region is at (or close to) the side of the alpha- subunit; and that the two acetylcholine binding sites are at the synaptic end of the alpha-subunits, 27-28 A from the central axis and approximately 53 A apart. In the crystal lattice, neighboring molecules are paired so that their delta- and alpha-subunits are juxtaposed, an organization that appears to relate closely to the grouping of receptors in vivo.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bon F., Lebrun E., Gomel J., Van Rapenbusch R., Cartaud J., Popot J. L., Changeux J. P. Image analysis of the heavy form of the acetylcholine receptor from Torpedo marmorata. J Mol Biol. 1984 Jun 25;176(2):205–237. doi: 10.1016/0022-2836(84)90421-2. [DOI] [PubMed] [Google Scholar]
  2. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  3. Brisson A., Unwin P. N. Quaternary structure of the acetylcholine receptor. Nature. 1985 Jun 6;315(6019):474–477. doi: 10.1038/315474a0. [DOI] [PubMed] [Google Scholar]
  4. Brisson A., Unwin P. N. Tubular crystals of acetylcholine receptor. J Cell Biol. 1984 Oct;99(4 Pt 1):1202–1211. doi: 10.1083/jcb.99.4.1202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chang H. W., Bock E. Molecular forms of acetylcholine receptor. Effects of calcium ions and a sulfhydryl reagent on the occurrence of oligomers. Biochemistry. 1977 Oct 4;16(20):4513–4520. doi: 10.1021/bi00639a028. [DOI] [PubMed] [Google Scholar]
  6. Conti-Tronconi B., Tzartos S., Lindstrom J. Monoclonal antibodies as probes of acetylcholine receptor structure. 2. Binding to native receptor. Biochemistry. 1981 Apr 14;20(8):2181–2191. doi: 10.1021/bi00511a017. [DOI] [PubMed] [Google Scholar]
  7. DeRosier D. J., Moore P. B. Reconstruction of three-dimensional images from electron micrographs of structures with helical symmetry. J Mol Biol. 1970 Sep 14;52(2):355–369. doi: 10.1016/0022-2836(70)90036-7. [DOI] [PubMed] [Google Scholar]
  8. Fairclough R. H., Finer-Moore J., Love R. A., Kristofferson D., Desmeules P. J., Stroud R. M. Subunit organization and structure of an acetylcholine receptor. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 1):9–20. doi: 10.1101/sqb.1983.048.01.004. [DOI] [PubMed] [Google Scholar]
  9. Gullick W. J., Lindstrom J. M. Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica. Biochemistry. 1983 Jul 5;22(14):3312–3320. doi: 10.1021/bi00283a003. [DOI] [PubMed] [Google Scholar]
  10. Hamilton S. L., Pratt D. R., Eaton D. C. Arrangement of the subunits of the nicotinic acetylcholine receptor of Torpedo californica as determined by alpha-neurotoxin cross-linking. Biochemistry. 1985 Apr 23;24(9):2210–2219. doi: 10.1021/bi00330a015. [DOI] [PubMed] [Google Scholar]
  11. Heuser J. E., Salpeter S. R. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane. J Cell Biol. 1979 Jul;82(1):150–173. doi: 10.1083/jcb.82.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Holtzman E., Wise D., Wall J., Karlin A. Electron microscopy of complexes of isolated acetylcholine receptor, biotinyl-toxin, and avidin. Proc Natl Acad Sci U S A. 1982 Jan;79(2):310–314. doi: 10.1073/pnas.79.2.310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johnson D. A., Voet J. G., Taylor P. Fluorescence energy transfer between cobra alpha-toxin molecules bound to the acetylcholine receptor. J Biol Chem. 1984 May 10;259(9):5717–5725. [PubMed] [Google Scholar]
  14. Kao P. N., Dwork A. J., Kaldany R. R., Silver M. L., Wideman J., Stein S., Karlin A. Identification of the alpha subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J Biol Chem. 1984 Oct 10;259(19):11662–11665. [PubMed] [Google Scholar]
  15. Karlin A., Holtzman E., Yodh N., Lobel P., Wall J., Hainfeld J. The arrangement of the subunits of the acetylcholine receptor of Torpedo californica. J Biol Chem. 1983 Jun 10;258(11):6678–6681. [PubMed] [Google Scholar]
  16. Kistler J., Stroud R. M., Klymkowsky M. W., Lalancette R. A., Fairclough R. H. Structure and function of an acetylcholine receptor. Biophys J. 1982 Jan;37(1):371–383. doi: 10.1016/S0006-3495(82)84685-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kubalek E., Ralston S., Lindstrom J., Unwin N. Location of subunits within the acetylcholine receptor by electron image analysis of tubular crystals from Torpedo marmorata. J Cell Biol. 1987 Jul;105(1):9–18. doi: 10.1083/jcb.105.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindstrom J., Einarson B., Tzartos S. Production and assay of antibodies to acetylcholine receptors. Methods Enzymol. 1981;74(Pt 100):432–460. doi: 10.1016/0076-6879(81)74031-x. [DOI] [PubMed] [Google Scholar]
  19. Lindstrom J., Gullick W., Conti-Tronconi B., Ellisman M. Proteolytic nicking of the acetylcholine receptor. Biochemistry. 1980 Oct 14;19(21):4791–4795. doi: 10.1021/bi00562a012. [DOI] [PubMed] [Google Scholar]
  20. Mage M. G. Preparation of Fab fragments from IgGs of different animal species. Methods Enzymol. 1980;70(A):142–150. doi: 10.1016/s0076-6879(80)70045-9. [DOI] [PubMed] [Google Scholar]
  21. McCarthy M. P., Earnest J. P., Young E. F., Choe S., Stroud R. M. The molecular neurobiology of the acetylcholine receptor. Annu Rev Neurosci. 1986;9:383–413. doi: 10.1146/annurev.ne.09.030186.002123. [DOI] [PubMed] [Google Scholar]
  22. Nomoto H., Takahashi N., Nagaki Y., Endo S., Arata Y., Hayashi K. Carbohydrate structures of acetylcholine receptor from Torpedo californica and distribution of oligosaccharides among the subunits. Eur J Biochem. 1986 Jun 2;157(2):233–242. doi: 10.1111/j.1432-1033.1986.tb09661.x. [DOI] [PubMed] [Google Scholar]
  23. Popot J. L., Changeux J. P. Nicotinic receptor of acetylcholine: structure of an oligomeric integral membrane protein. Physiol Rev. 1984 Oct;64(4):1162–1239. doi: 10.1152/physrev.1984.64.4.1162. [DOI] [PubMed] [Google Scholar]
  24. Ratnam M., Nguyen D. L., Rivier J., Sargent P. B., Lindstrom J. Transmembrane topography of nicotinic acetylcholine receptor: immunochemical tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistry. 1986 May 6;25(9):2633–2643. doi: 10.1021/bi00357a052. [DOI] [PubMed] [Google Scholar]
  25. Ratnam M., Sargent P. B., Sarin V., Fox J. L., Nguyen D. L., Rivier J., Criado M., Lindstrom J. Location of antigenic determinants on primary sequences of subunits of nicotinic acetylcholine receptor by peptide mapping. Biochemistry. 1986 May 6;25(9):2621–2632. doi: 10.1021/bi00357a051. [DOI] [PubMed] [Google Scholar]
  26. Tzartos S. J., Rand D. E., Einarson B. L., Lindstrom J. M. Mapping of surface structures of electrophorus acetylcholine receptor using monoclonal antibodies. J Biol Chem. 1981 Aug 25;256(16):8635–8645. [PubMed] [Google Scholar]
  27. Tzartos S. J., Seybold M. E., Lindstrom J. M. Specificities of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc Natl Acad Sci U S A. 1982 Jan;79(1):188–192. doi: 10.1073/pnas.79.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tzartos S. J., Sophianos D., Efthimiadis A. Role of the main immunogenic region of acetylcholine receptor in myasthenia gravis. An Fab monoclonal antibody protects against antigenic modulation by human sera. J Immunol. 1985 Apr;134(4):2343–2349. [PubMed] [Google Scholar]
  29. Tzartos S., Langeberg L., Hochschwender S., Swanson L. W., Lindstrom J. Characteristics of monoclonal antibodies to denatured Torpedo and to native calf acetylcholine receptors: species, subunit and region specificity. J Neuroimmunol. 1986 Jan;10(3):235–253. doi: 10.1016/0165-5728(86)90105-0. [DOI] [PubMed] [Google Scholar]
  30. Wilson P. T., Lentz T. L., Hawrot E. Determination of the primary amino acid sequence specifying the alpha-bungarotoxin binding site on the alpha subunit of the acetylcholine receptor from Torpedo californica. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8790–8794. doi: 10.1073/pnas.82.24.8790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zingsheim H. P., Barrantes F. J., Frank J., Hänicke W., Neugebauer D. C. Direct structural localization of two toxin-recognition sites on an ACh receptor protein. Nature. 1982 Sep 2;299(5878):81–84. doi: 10.1038/299081a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES