Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):303–311. doi: 10.1083/jcb.105.1.303

Calcium-sensitive, lipid-binding cytoskeletal proteins of the human placental microvillar region

PMCID: PMC2114932  PMID: 3611190

Abstract

In this study we describe a group of Ca2+-sensitive proteins located in the microvillar region of the human placental syncytiotrophoblast. By following the distribution of proteins between the particulate and supernatant phases of detergent-solubilized microvilli in the presence of defined concentrations of free Ca2+, we demonstrate a class of proteins of subunit molecular weights 72,000, 69,000, 38,000, 36,000, and 32,000 that associate with both the cytoskeleton and lipid at high concentrations of free Ca2+. These proteins can be released from microvilli using EGTA-containing buffers. Although they do not bind to phenyl-Sepharose, they will bind to phospholipids immobilized on phenyl- Sepharose columns in a Ca2+-dependent manner and show a marked preference for phospholipids with negatively charged headgroups. The results provide evidence for a sequence of events which may occur within the microvillus as the localized concentration of intracellular free Ca2+ rises.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Booth A. G., Olaniyan R. O., Vanderpuye O. A. An improved method for the preparation of human placental syncytiotrophoblast microvilli. Placenta. 1980 Oct-Dec;1(4):327–336. doi: 10.1016/s0143-4004(80)80034-8. [DOI] [PubMed] [Google Scholar]
  2. Booth A. G., Vanderpuye O. A. Structure of human placental microvilli. Ciba Found Symp. 1983;95:180–194. doi: 10.1002/9780470720769.ch11. [DOI] [PubMed] [Google Scholar]
  3. Booth A. G., Wilson M. J. Human placental coated vesicles contain receptor-bound transferrin. Biochem J. 1981 Apr 15;196(1):355–362. doi: 10.1042/bj1960355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bretscher A. Purification of an 80,000-dalton protein that is a component of the isolated microvillus cytoskeleton, and its localization in nonmuscle cells. J Cell Biol. 1983 Aug;97(2):425–432. doi: 10.1083/jcb.97.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burn P., Rotman A., Meyer R. K., Burger M. M. Diacylglycerol in large alpha-actinin/actin complexes and in the cytoskeleton of activated platelets. Nature. 1985 Apr 4;314(6010):469–472. doi: 10.1038/314469a0. [DOI] [PubMed] [Google Scholar]
  6. Burridge K., Feramisco J. R. Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature. 1981 Dec 10;294(5841):565–567. doi: 10.1038/294565a0. [DOI] [PubMed] [Google Scholar]
  7. Burridge K., Feramisco J., Blose S. The association of alpha-actinin and clathrin with the plasma membrane. Prog Clin Biol Res. 1980;41:907–924. [PubMed] [Google Scholar]
  8. Carraway K. L., Huggins J. W., Cerra R. F., Yeltman D. R., Carraway C. A. alpha-Actinin-containing branched microvilli isolated from an ascites adenocarcinoma. Nature. 1980 Jun 12;285(5765):508–510. doi: 10.1038/285508a0. [DOI] [PubMed] [Google Scholar]
  9. Duhaiman A. S., Bamburg J. R. Isolation of brain alpha-actinin. Its characterization and a comparison of its properties with those of muscle alpha-actinins. Biochemistry. 1984 Apr 10;23(8):1600–1608. doi: 10.1021/bi00303a003. [DOI] [PubMed] [Google Scholar]
  10. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  11. Fowler V. M., Luna E. J., Hargreaves W. R., Taylor D. L., Branton D. Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane. J Cell Biol. 1981 Feb;88(2):388–395. doi: 10.1083/jcb.88.2.388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Geisow M., Childs J., Dash B., Harris A., Panayotou G., Südhof T., Walker J. H. Cellular distribution of three mammalian Ca2+-binding proteins related to Torpedo calelectrin. EMBO J. 1984 Dec 1;3(12):2969–2974. doi: 10.1002/j.1460-2075.1984.tb02242.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gerke V., Weber K. Identity of p36K phosphorylated upon Rous sarcoma virus transformation with a protein purified from brush borders; calcium-dependent binding to non-erythroid spectrin and F-actin. EMBO J. 1984 Jan;3(1):227–233. doi: 10.1002/j.1460-2075.1984.tb01789.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glenney J. R., Jr, Bretscher A., Weber K. Calcium control of the intestinal microvillus cytoskeleton: its implications for the regulation of microfilament organizations. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6458–6462. doi: 10.1073/pnas.77.11.6458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Glenney J. R., Jr, Glenney P. Comparison of Ca++-regulated events in the intestinal brush border. J Cell Biol. 1985 Mar;100(3):754–763. doi: 10.1083/jcb.100.3.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glenney J. R., Jr Phosphorylation of p36 in vitro with pp60src. Regulation by Ca2+ and phospholipid. FEBS Lett. 1985 Nov 11;192(1):79–82. doi: 10.1016/0014-5793(85)80047-8. [DOI] [PubMed] [Google Scholar]
  17. Goodloe-Holland C. M., Luna E. J. A membrane cytoskeleton from Dictyostelium discoideum. III. Plasma membrane fragments bind predominantly to the sides of actin filaments. J Cell Biol. 1984 Jul;99(1 Pt 1):71–78. doi: 10.1083/jcb.99.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
  19. Gould K. L., Cooper J. A., Bretscher A., Hunter T. The protein-tyrosine kinase substrate, p81, is homologous to a chicken microvillar core protein. J Cell Biol. 1986 Feb;102(2):660–669. doi: 10.1083/jcb.102.2.660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hoessli D., Rungger-Brändle E., Jockusch B. M., Gabbiani G. Lymphocyte alpha-actinin. Relationship to cell membrane and co-capping with surface receptors. J Cell Biol. 1980 Feb;84(2):305–314. doi: 10.1083/jcb.84.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Huang K. S., Wallner B. P., Mattaliano R. J., Tizard R., Burne C., Frey A., Hession C., McGray P., Sinclair L. K., Chow E. P. Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase. Cell. 1986 Jul 18;46(2):191–199. doi: 10.1016/0092-8674(86)90736-1. [DOI] [PubMed] [Google Scholar]
  22. Johnsson N., Vandekerckhove J., Van Damme J., Weber K. Binding sites for calcium, lipid and p11 on p36, the substrate of retroviral tyrosine-specific protein kinases. FEBS Lett. 1986 Mar 31;198(2):361–364. doi: 10.1016/0014-5793(86)80437-9. [DOI] [PubMed] [Google Scholar]
  23. Klee C. B. Conformational transition accompanying the binding of Ca2+ to the protein activator of 3',5'-cyclic adenosine monophosphate phosphodiesterase. Biochemistry. 1977 Mar 8;16(5):1017–1024. doi: 10.1021/bi00624a033. [DOI] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Landon F., Olomucki A. Isolation and physico-chemical properties of blood platelet alpha-actinin. Biochim Biophys Acta. 1983 Jan 12;742(1):129–134. doi: 10.1016/0167-4838(83)90368-0. [DOI] [PubMed] [Google Scholar]
  26. Mangeat P., Burridge K. Actin-membrane interaction in fibroblasts: what proteins are involved in this association? J Cell Biol. 1984 Jul;99(1 Pt 2):95s–103s. doi: 10.1083/jcb.99.1.95s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Marchisio P. C., Cirillo D., Naldini L., Primavera M. V., Teti A., Zambonin-Zallone A. Cell-substratum interaction of cultured avian osteoclasts is mediated by specific adhesion structures. J Cell Biol. 1984 Nov;99(5):1696–1705. doi: 10.1083/jcb.99.5.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Moore P. B., Dedman J. R. Calcium-dependent protein binding to phenothiazine columns. J Biol Chem. 1982 Aug 25;257(16):9663–9667. [PubMed] [Google Scholar]
  29. Ockleford C. D., Whyte A. Differeniated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: coated vesicles. J Cell Sci. 1977 Jun;25:293–312. doi: 10.1242/jcs.25.1.293. [DOI] [PubMed] [Google Scholar]
  30. Pusey M. L., Mayer L. D., Wei G. J., Bloomfield V. A., Nelsestuen G. L. Kinetic and hydrodynamic analysis of blood clotting factor V-membrane binding. Biochemistry. 1982 Oct 12;21(21):5262–5269. doi: 10.1021/bi00264a022. [DOI] [PubMed] [Google Scholar]
  31. Rhoads A. R., Lulla M., Moore P. B., Jackson C. E. Characterization of calcium-dependent membrane binding proteins of brain cortex. Biochem J. 1985 Aug 1;229(3):587–593. doi: 10.1042/bj2290587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Shadle P. J., Gerke V., Weber K. Three Ca2+-binding proteins from porcine liver and intestine differ immunologically and physicochemically and are distinct in Ca2+ affinities. J Biol Chem. 1985 Dec 25;260(30):16354–16360. [PubMed] [Google Scholar]
  33. Sobue K., Kanda K., Adachi J., Kakiuchi S. Calmodulin-binding proteins that interact with actin filaments in a Ca2+-dependent flip-flop manner: survey in brain and secretory tissues. Proc Natl Acad Sci U S A. 1983 Nov;80(22):6868–6871. doi: 10.1073/pnas.80.22.6868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sobue K., Tanaka T., Ashino N., Kakiuchi S. Ca2+ and calmodulin regulate microtubule-associated protein-actin filament interaction in a flip-flop switch. Biochim Biophys Acta. 1985 Jun 30;845(3):366–372. doi: 10.1016/0167-4889(85)90200-9. [DOI] [PubMed] [Google Scholar]
  35. Südhof T. C., Ebbecke M., Walker J. H., Fritsche U., Boustead C. Isolation of mammalian calelectrins: a new class of ubiquitous Ca2+-regulated proteins. Biochemistry. 1984 Mar 13;23(6):1103–1109. doi: 10.1021/bi00301a010. [DOI] [PubMed] [Google Scholar]
  36. Südhof T. C., Zimmermann C. W., Walker J. H. Calelectrin in human blood cells. Eur J Cell Biol. 1983 May;30(2):214–218. [PubMed] [Google Scholar]
  37. Vanderpuye O. A., Edwards H. C., Booth A. G. Proteins of the human placental microvillar cytoskeleton. alpha-Actinin. Biochem J. 1986 Jan 15;233(2):351–356. doi: 10.1042/bj2330351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Walker J. H., Obrocki J., Südhof T. C. Calelectrin, a calcium-dependent membrane-binding protein associated with secretory granules in Torpedo cholinergic electromotor nerve endings and rat adrenal medulla. J Neurochem. 1983 Jul;41(1):139–145. doi: 10.1111/j.1471-4159.1983.tb11825.x. [DOI] [PubMed] [Google Scholar]
  39. Walker J. H., Obrocki J., Zimmermann C. W. Identification of a proteoglycan antigen characteristic of cholinergic synaptic vesicles. J Neurochem. 1983 Jul;41(1):209–216. doi: 10.1111/j.1471-4159.1983.tb11829.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES