Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):345–357. doi: 10.1083/jcb.105.1.345

Absorptive and mucus-secreting subclones isolated from a multipotent intestinal cell line (HT-29) provide new models for cell polarity and terminal differentiation

PMCID: PMC2114933  PMID: 3611191

Abstract

A clone HT29-18 has been isolated from the parent cell line HT-29, which derived from a human colon adenocarcinoma (Fogh, J., and G. Trempe, 1975, Human Tumor Cells in Vitro, J. Fogh, editor, Plenum Publishing Corp., New York, 115-141). This clone is able to differentiate as the parent cell line does. Differentiation occurs when glucose is replaced by galactose in the culture medium (Pinto, M., M.D. Appay, P. Simon-Assman, G. Chevalier, N. Dracopoli, J. Fogh, and A. Zweibaum, 1982, Biol. Cell., 44:193-196). We demonstrate here that the differentiated cloned population HT29-18/gal is heterogenous: although 90% of the cells show morphological characteristics of "absorptive cells", only 20-30% of them display sucrase-isomaltase in their apical microvillar membranes. About 10% of the entire cell population consists of cells containing mucous granules similar to intestinal goblet cells. We have isolated two subclones, HT29-18-C1 and HT29-18-N2, from the differentiated HT29-18/gal cells. HT29-18-C1 cells show morphological characteristics of polarized absorptive cells, when growing either in glucose- or in galactose-containing media, but the sucrase-isomaltase is not expressed in the cells grown in glucose-containing medium. The clone HT29-18-N2 is also polarized in both culture conditions and is similar to globlet cells in vivo. It grows as a monolayer, exhibits tight junctions, and contains numerous mucous granules whose exocytosis can be triggered by carbachol, a parasympathomimetic drug. We conclude that the clone HT29-18 first isolated was a multipotent cell population from which we isolated several subclones that differentiate either as absorptive (HT29-18-C1) or as mucous (HT29-18-N2) cells. In contrast to the parent HT-29 cell line, the subclones retain most of their differentiated properties in glucose-containing medium.

Full Text

The Full Text of this article is available as a PDF (5.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alderman E. M., Lobb R. R., Fett J. W. Isolation of tumor-secreted products from human carcinoma cells maintained in a defined protein-free medium. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5771–5775. doi: 10.1073/pnas.82.17.5771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bara J., André J., Gautier R., Burtin P. Abnormal pattern of mucus-associated M1 antigens in histologically normal mucosa adjacent to colonic adenocarcinomas. Cancer Res. 1984 Sep;44(9):4040–4045. [PubMed] [Google Scholar]
  3. Borman L. S., Swartzendruber D. C., Littlefield L. G. Establishment of two parental cell lines and three clonal cell strains from rat colonic carcinoma. Cancer Res. 1982 Dec;42(12):5074–5083. [PubMed] [Google Scholar]
  4. Brattain M. G., Strobel-Stevens J., Fine D., Webb M., Sarrif A. M. Establishment of mouse colonic carcinoma cell lines with different metastatic properties. Cancer Res. 1980 Jul;40(7):2142–2146. [PubMed] [Google Scholar]
  5. Buckley K., Kelly R. B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol. 1985 Apr;100(4):1284–1294. doi: 10.1083/jcb.100.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chang W. W., Leblond C. P. Renewal of the epithelium in the descending colon of the mouse. I. Presence of three cell populations: vacuolated-columnar, mucous and argentaffin. Am J Anat. 1971 May;131(1):73–99. doi: 10.1002/aja.1001310105. [DOI] [PubMed] [Google Scholar]
  7. Chastre E., Emami S., Rosselin G., Gespach C. Vasoactive intestinal peptide receptor activity and specificity during enterocyte-like differentiation and retrodifferentiation of the human colonic cancerous subclone HT29-18. FEBS Lett. 1985 Sep 2;188(2):197–204. doi: 10.1016/0014-5793(85)80371-9. [DOI] [PubMed] [Google Scholar]
  8. Cheng H., Leblond C. P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anat. 1974 Dec;141(4):537–561. doi: 10.1002/aja.1001410407. [DOI] [PubMed] [Google Scholar]
  9. Cleveland P. H., Belnap L. P., Knotts F. B., Nayak S. K., Baird S. M., Pilch Y. H. Tumor-associated antigens of chemically-induced murine tumors; the emergence of MuLV and fetal antigens after serial passage in culture. Int J Cancer. 1979 Mar 15;23(3):380–391. doi: 10.1002/ijc.2910230317. [DOI] [PubMed] [Google Scholar]
  10. Dharmsathaphorn K., McRoberts J. A., Mandel K. G., Tisdale L. D., Masui H. A human colonic tumor cell line that maintains vectorial electrolyte transport. Am J Physiol. 1984 Feb;246(2 Pt 1):G204–G208. doi: 10.1152/ajpgi.1984.246.2.G204. [DOI] [PubMed] [Google Scholar]
  11. Dudouet B., Robine S., Huet C., Sahuquillo-Merino C., Blair L., Coudrier E., Louvard D. Changes in villin synthesis and subcellular distribution during intestinal differentiation of HT29-18 clones. J Cell Biol. 1987 Jul;105(1):359–369. doi: 10.1083/jcb.105.1.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  13. Hauri H. P., Sterchi E. E., Bienz D., Fransen J. A., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LEBLOND C. P., MESSIER B. Renewal of chief cells and goblet cells in the small intestine as shown by radioautography after injection of thymidine-H3 into mice. Anat Rec. 1958 Nov;132(3):247–259. doi: 10.1002/ar.1091320303. [DOI] [PubMed] [Google Scholar]
  15. Luft J. H. Ruthenium red and violet. I. Chemistry, purification, methods of use for electron microscopy and mechanism of action. Anat Rec. 1971 Nov;171(3):347–368. doi: 10.1002/ar.1091710302. [DOI] [PubMed] [Google Scholar]
  16. Madara J. L., Dharmsathaphorn K. Occluding junction structure-function relationships in a cultured epithelial monolayer. J Cell Biol. 1985 Dec;101(6):2124–2133. doi: 10.1083/jcb.101.6.2124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin F., Knobel S., Martin M., Bordes M. A carcinofetal antigen located on the membrane of cells from rat intestinal carcinoma in culture. Cancer Res. 1975 Feb;35(2):333–336. [PubMed] [Google Scholar]
  18. Mostov K. E., Blobel G. A transmembrane precursor of secretory component. The receptor for transcellular transport of polymeric immunoglobulins. J Biol Chem. 1982 Oct 10;257(19):11816–11821. [PubMed] [Google Scholar]
  19. Négrel R., Rampal P., Nano J. L., Cavenel C., Ailhaud G. Establishment and characterization of an epithelial intestinal cell line from rat fetus. Exp Cell Res. 1983 Feb;143(2):427–437. doi: 10.1016/0014-4827(83)90069-1. [DOI] [PubMed] [Google Scholar]
  20. Quaroni A. Crypt cell development in newborn rat small intestine. J Cell Biol. 1985 May;100(5):1601–1610. doi: 10.1083/jcb.100.5.1601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Quaroni A., Isselbacher K. J. Cytotoxic effects and metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in duodenal and ileal epithelial cell cultures. J Natl Cancer Inst. 1981 Dec;67(6):1353–1362. [PubMed] [Google Scholar]
  22. Quaroni A., May R. J. Establishment and characterizaton of intestinal epithelial cell cultures. Methods Cell Biol. 1980;21B:403–427. [PubMed] [Google Scholar]
  23. Quaroni A., Wands J., Trelstad R. L., Isselbacher K. J. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol. 1979 Feb;80(2):248–265. doi: 10.1083/jcb.80.2.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rabito C. A. Localization of the Na+-sugar cotransport system in a kidney epithelial cell line (LLC PK1). Biochim Biophys Acta. 1981 Dec 7;649(2):286–296. doi: 10.1016/0005-2736(81)90417-x. [DOI] [PubMed] [Google Scholar]
  26. Reggio H., Webster P., Louvard D. Use of immunocytochemical techniques in studying the biogenesis of cell surfaces in polarized epithelia. Methods Enzymol. 1983;98:379–395. doi: 10.1016/0076-6879(83)98166-1. [DOI] [PubMed] [Google Scholar]
  27. Rousset M., Dussaulx E., Chevalier G., Zweibaum A. Expression phénotypique des antigènes coliques polymorphes (WZ) dans les adénocarcinomes du côlon humain. C R Acad Sci Hebd Seances Acad Sci D. 1978 Feb 27;286(8):659–662. [PubMed] [Google Scholar]
  28. Specian R. D., Neutra M. R. Mechanism of rapid mucus secretion in goblet cells stimulated by acetylcholine. J Cell Biol. 1980 Jun;85(3):626–640. doi: 10.1083/jcb.85.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tan M. H., Holyoke E. D., Goldrosen M. H. Murine colon adenocarcinomas: methods for selective culture in vitro. J Natl Cancer Inst. 1976 Apr;56(4):871–873. doi: 10.1093/jnci/56.4.871. [DOI] [PubMed] [Google Scholar]
  30. Zweibaum A., Hauri H. P., Sterchi E., Chantret I., Haffen K., Bamat J., Sordat B. Immunohistological evidence, obtained with monoclonal antibodies, of small intestinal brush border hydrolases in human colon cancers and foetal colons. Int J Cancer. 1984 Nov 15;34(5):591–598. doi: 10.1002/ijc.2910340502. [DOI] [PubMed] [Google Scholar]
  31. Zweibaum A., Pinto M., Chevalier G., Dussaulx E., Triadou N., Lacroix B., Haffen K., Brun J. L., Rousset M. Enterocytic differentiation of a subpopulation of the human colon tumor cell line HT-29 selected for growth in sugar-free medium and its inhibition by glucose. J Cell Physiol. 1985 Jan;122(1):21–29. doi: 10.1002/jcp.1041220105. [DOI] [PubMed] [Google Scholar]
  32. Zweibaum A., Triadou N., Kedinger M., Augeron C., Robine-Léon S., Pinto M., Rousset M., Haffen K. Sucrase-isomaltase: a marker of foetal and malignant epithelial cells of the human colon. Int J Cancer. 1983 Oct 15;32(4):407–412. doi: 10.1002/ijc.2910320403. [DOI] [PubMed] [Google Scholar]
  33. van Dongen J. M., Visser W. J., Daems W. T., Galjaard H. The relation between cell proliferation, differentiation and ultrastructural development in rat intestinal epithelium. Cell Tissue Res. 1976 Oct 29;174(2):183–199. doi: 10.1007/BF00222158. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES