Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1987 Jul 1;105(1):181–189. doi: 10.1083/jcb.105.1.181

Exocytosis induction in Paramecium tetraurelia cells by exogenous phosphoprotein phosphatase in vivo and in vitro: possible involvement of calcineurin in exocytotic membrane fusion

PMCID: PMC2114937  PMID: 3611184

Abstract

Since it had been previously shown that in Paramecium cells exocytosis involves the dephosphorylation of a 65-kD phosphoprotein (PP), we tried to induce exocytotic membrane fusion by exogenous phosphatases (alkaline phosphatase or calcineurin [CaN]). The occurrence of calmodulin (CaM) at preformed exocytosis sites (Momayezi, M., H. Kersken, U. Gras, J. Vilmart-Seuwen, and H. Plattner, 1986, J. Histochem. Cytochem., 34:1621-1638) and the current finding of the presence of the 65-kD PP and of a CaN-like protein in cell surface fragments ("cortices") isolated from Paramecium cells led us to also test the effect of antibodies (Ab) against CaM or CaN on exocytosis performance. Microinjected anti-CaN Ab strongly inhibit exocytosis. (Negative results with microinjected anti-CaM Ab can easily be explained by the abundance of CaM.) Alternatively, microinjection of a Ca2+-CaM-CaN complex triggers exocytosis. The same occurs with alkaline phosphatase. All these effects can also be mimicked in vitro with isolated cortices. In vitro exocytosis triggered by adding Ca2+-CaM-CaN or alkaline phosphatase is paralleled by dephosphorylation of the 65-kD PP. Exocytosis can also be inhibited in cortices by anti-CaM Ab or anti- CaN Ab. In wild-type cells, compounds that inhibit phosphatase activity, but none that inhibit kinases or proteases, are able to inhibit exocytosis. Exocytosis cannot be induced by phosphatase injection in a membrane-fusion-deficient mutant strain (nd9-28 degrees C) characterized by a defective organization of exocytosis sites (Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). We conclude that exocytotic membrane fusion requires an adequate assembly of molecular components to allow for the dephosphorylation of a 65-kD PP and that this step is crucial for the induction of exocytotic membrane fusion in Paramecium cells. In vivo this probably involves a Ca2+-CaM-stimulated CaN-like PP phosphatase.

Full Text

The Full Text of this article is available as a PDF (2.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader M. F., Hikita T., Trifaró J. M. Calcium-dependent calmodulin binding to chromaffin granule membranes: presence of a 65-kilodalton calmodulin-binding protein. J Neurochem. 1985 Feb;44(2):526–539. doi: 10.1111/j.1471-4159.1985.tb05445.x. [DOI] [PubMed] [Google Scholar]
  2. Baum B. J., Freiberg J. M., Ito H., Roth G. S., Filburn C. R. beta-Adrenergic regulation of protein phosphorylation and its relationship to exocrine secretion in dispersed rat parotid gland acinar cells. J Biol Chem. 1981 Sep 25;256(18):9731–9736. [PubMed] [Google Scholar]
  3. Beisson J., Lefort-Tran M., Pouphile M., Rossignol M., Satir B. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J Cell Biol. 1976 Apr;69(1):126–143. doi: 10.1083/jcb.69.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brooks J. C., Brooks M. Protein thiophosphorylation associated with secretory inhibition in permeabilized chromaffin cells. Life Sci. 1985 Nov 18;37(20):1869–1875. doi: 10.1016/0024-3205(85)90003-7. [DOI] [PubMed] [Google Scholar]
  5. Brooks J. C., Treml S., Brooks M. Thiophosphorylation prevents catecholamine secretion by chemically skinned chromaffin cells. Life Sci. 1984 Jul 30;35(5):569–574. doi: 10.1016/0024-3205(84)90251-0. [DOI] [PubMed] [Google Scholar]
  6. Burgoyne R. D., Geisow M. J. Phosphoproteins of the adrenal chromaffin granule membrane. J Neurochem. 1982 Nov;39(5):1387–1396. doi: 10.1111/j.1471-4159.1982.tb12582.x. [DOI] [PubMed] [Google Scholar]
  7. Burgoyne R. D. Mechanisms of secretion from adrenal chromaffin cells. Biochim Biophys Acta. 1984 Jun 25;779(2):201–216. doi: 10.1016/0304-4157(84)90009-1. [DOI] [PubMed] [Google Scholar]
  8. Burnham D. B. Characterization of Ca2+-activated protein phosphatase activity in exocrine pancreas. Biochem J. 1985 Oct 15;231(2):335–341. doi: 10.1042/bj2310335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burnham D. B., Williams J. A. Effects of carbachol, cholecystokinin, and insulin on protein phosphorylation in isolated pancreatic acini. J Biol Chem. 1982 Sep 10;257(17):10523–10528. [PubMed] [Google Scholar]
  10. Côté A., Doucet J. P., Trifaró J. M. Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neuroscience. 1986 Oct;19(2):629–645. doi: 10.1016/0306-4522(86)90286-1. [DOI] [PubMed] [Google Scholar]
  11. DeLorenzo R. J., Burdette S., Holderness J. Benzodiazepine inhibition of the calcium-calmodulin protein kinase system in brain membrane. Science. 1981 Jul 31;213(4507):546–549. doi: 10.1126/science.6264605. [DOI] [PubMed] [Google Scholar]
  12. DeLorenzo R. J. The calmodulin hypothesis of neurotransmission. Cell Calcium. 1981 Aug;2(4):365–385. doi: 10.1016/0143-4160(81)90026-9. [DOI] [PubMed] [Google Scholar]
  13. Ewald D. A., Williams A., Levitan I. B. Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature. 1985 Jun 6;315(6019):503–506. doi: 10.1038/315503a0. [DOI] [PubMed] [Google Scholar]
  14. Freedman S. D., Jamieson J. D. Hormone-induced protein phosphorylation. II. Localization to the ribosomal fraction from rat exocrine pancreas and parotid of a 29,000-dalton protein phosphorylated in situ in response to secretagogues. J Cell Biol. 1982 Dec;95(3):909–917. doi: 10.1083/jcb.95.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gad A. E., Silver B. L., Eytan G. D. Polycation-induced fusion of negatively-charged vesicles. Biochim Biophys Acta. 1982 Aug 25;690(1):124–132. doi: 10.1016/0005-2736(82)90246-2. [DOI] [PubMed] [Google Scholar]
  16. Gergely P., Erdödi F., Bot G. Heparin inhibits the activity of protein phosphatase-1. FEBS Lett. 1984 Apr 9;169(1):45–48. doi: 10.1016/0014-5793(84)80286-0. [DOI] [PubMed] [Google Scholar]
  17. Gilligan D. M., Satir B. H. Protein phosphorylation/dephosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J Biol Chem. 1982 Dec 10;257(23):13903–13906. [PubMed] [Google Scholar]
  18. Gratecos D., Fischer E. H. Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):960–967. doi: 10.1016/s0006-291x(74)80237-8. [DOI] [PubMed] [Google Scholar]
  19. Haga N., Forte M., Ramanathan R., Saimi Y., Takahashi M., Kung C. Purification of a soluble protein controlling ca channel activity in paramecium. Biophys J. 1984 Jan;45(1):130–132. doi: 10.1016/S0006-3495(84)84136-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Haga N., Forte M., Saimi Y., Kung C. Microinjection of cytoplasm as a test of complementation in Paramecium. J Cell Biol. 1982 Feb;92(2):559–564. doi: 10.1083/jcb.92.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hansburg D., Briles D. E., Davie J. M. Analysis of the diversity of murine antibodies to dextran B1355. I. Generation of a larger, pauci-clonal response by a bacterial vaccine. J Immunol. 1976 Aug;117(2):569–575. [PubMed] [Google Scholar]
  22. Harris B., Cheek T. R., Burgoyne R. D. Effects of metalloendoproteinase inhibitors on secretion and intracellular free calcium in bovine adrenal chromaffin cells. Biochim Biophys Acta. 1986 Oct 31;889(1):1–5. doi: 10.1016/0167-4889(86)90002-9. [DOI] [PubMed] [Google Scholar]
  23. Hempstead B. L., Parker C. W., Kulczycki A., Jr Selective phosphorylation of the IgE receptor in antigen-stimulated rat mast cells. Proc Natl Acad Sci U S A. 1983 May;80(10):3050–3053. doi: 10.1073/pnas.80.10.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ingebritsen T. S., Cohen P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem. 1983 May 2;132(2):255–261. doi: 10.1111/j.1432-1033.1983.tb07357.x. [DOI] [PubMed] [Google Scholar]
  25. Iwasa F., Ishiguro K. Calmodulin-binding protein (55K + 17K) of sea urchin eggs has a Ca2+- and calmodulin-dependent phosphoprotein phosphatase activity. J Biochem. 1986 May;99(5):1353–1358. doi: 10.1093/oxfordjournals.jbchem.a135603. [DOI] [PubMed] [Google Scholar]
  26. Jackson R. C., Ward K. K., Haggerty J. G. Mild proteolytic digestion restores exocytotic activity to N-ethylmaleimide-inactivated cell surface complex from sea urchin eggs. J Cell Biol. 1985 Jul;101(1):6–11. doi: 10.1083/jcb.101.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kenigsberg R. L., Trifaró J. M. Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neuroscience. 1985 Jan;14(1):335–347. doi: 10.1016/0306-4522(85)90183-6. [DOI] [PubMed] [Google Scholar]
  28. Kersken H., Vilmart-Seuwen J., Momayezi M., Plattner H. Filamentous actin in Paramecium cells: mapping by phalloidin affinity labeling in vivo and in vitro. J Histochem Cytochem. 1986 Apr;34(4):443–454. doi: 10.1177/34.4.2419395. [DOI] [PubMed] [Google Scholar]
  29. Klee C. B., Krinks M. H., Manalan A. S., Cohen P., Stewart A. A. Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase. Methods Enzymol. 1983;102:227–244. doi: 10.1016/s0076-6879(83)02024-8. [DOI] [PubMed] [Google Scholar]
  30. Klumpp S., Steiner A. L., Schultz J. E. Immunocytochemical localization of cyclic GMP, cGMP-dependent protein kinase, calmodulin and calcineurin in Paramecium tetraurelia. Eur J Cell Biol. 1983 Nov;32(1):164–170. [PubMed] [Google Scholar]
  31. Lefort-Tran M., Aufderheide K., Pouphile M., Rossignol M., Beisson J. Control of exocytotic processes: cytological and physiological studies of trichocyst mutants in Paramecium tetraurelia. J Cell Biol. 1981 Feb;88(2):301–311. doi: 10.1083/jcb.88.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Llinás R., McGuinness T. L., Leonard C. S., Sugimori M., Greengard P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A. 1985 May;82(9):3035–3039. doi: 10.1073/pnas.82.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Maihle N. J., Dedman J. R., Means A. R., Chafouleas J. G., Satir B. H. Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia. J Cell Biol. 1981 Jun;89(3):695–699. doi: 10.1083/jcb.89.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
  35. Matt H., Bilinski M., Plattner H. Adenosinetriphosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. J Cell Sci. 1978 Aug;32:67–86. doi: 10.1242/jcs.32.1.67. [DOI] [PubMed] [Google Scholar]
  36. Momayezi M., Kersken H., Gras U., Vilmart-Seuwen J., Plattner H. Calmodulin in Paramecium tetraurelia: localization from the in vivo to the ultrastructural level. J Histochem Cytochem. 1986 Dec;34(12):1621–1638. doi: 10.1177/34.12.3097118. [DOI] [PubMed] [Google Scholar]
  37. Mundy D. I., Strittmatter W. J. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells. Cell. 1985 Mar;40(3):645–656. doi: 10.1016/0092-8674(85)90213-2. [DOI] [PubMed] [Google Scholar]
  38. Nestler E. J., Walaas S. I., Greengard P. Neuronal phosphoproteins: physiological and clinical implications. Science. 1984 Sep 21;225(4668):1357–1364. doi: 10.1126/science.6474180. [DOI] [PubMed] [Google Scholar]
  39. Norling L. L., Colca J. R., Brooks C. L., Kloepper R. F., McDaniel M. L., Landt M. Specificity of inhibition of calcium- and calmodulin-dependent protein kinase by alloxan. Biochim Biophys Acta. 1984 Sep 28;801(2):197–205. doi: 10.1016/0304-4165(84)90068-0. [DOI] [PubMed] [Google Scholar]
  40. Pallen C. J., Brown M. L., Matsui H., Mitchell K. J., Wang J. H. Survey of calcineurin activity towards nonprotein compounds and identification of phosphoenol pyruvate as a substrate. Biochem Biophys Res Commun. 1985 Sep 30;131(3):1256–1261. doi: 10.1016/0006-291x(85)90226-8. [DOI] [PubMed] [Google Scholar]
  41. Pallen C. J., Wang J. H. A multifunctional calmodulin-stimulated phosphatase. Arch Biochem Biophys. 1985 Mar;237(2):281–291. doi: 10.1016/0003-9861(85)90279-6. [DOI] [PubMed] [Google Scholar]
  42. Pallen C. J., Wang J. H. Calmodulin-stimulated dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine by calcineurin. J Biol Chem. 1983 Jul 25;258(14):8550–8553. [PubMed] [Google Scholar]
  43. Pape R., Plattner H. Synchronous exocytosis in Paramecium cells. V. Ultrastructural adaptation phenomena during re-insertion of secretory organelles. Eur J Cell Biol. 1985 Jan;36(1):38–47. [PubMed] [Google Scholar]
  44. Plattner H., Reichel K., Matt H., Beisson J., Lefort-Tran M., Pouphile M. Genetic dissection of the final exocytosis steps in Paramecium tetraurelia cells: cytochemical determination of Ca2+-ATPase activity over performed exocytosis sites. J Cell Sci. 1980 Dec;46:17–40. doi: 10.1242/jcs.46.1.17. [DOI] [PubMed] [Google Scholar]
  45. Plattner H., Stürzl R., Matt H. Synchronous exocytosis in Paramecium cells. IV. Polyamino compounds as potent trigger agents for repeatable trigger-redocking cycles. Eur J Cell Biol. 1985 Jan;36(1):32–37. [PubMed] [Google Scholar]
  46. Rauh J. J., Nelson D. L. Calmodulin is a major component of extruded trichocysts from Paramecium tetraurelia. J Cell Biol. 1981 Dec;91(3 Pt 1):860–865. doi: 10.1083/jcb.91.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Roberts M. L., Butcher F. R. The involvement of protein phosphorylation in stimulus-secretion coupling in the mouse exocrine pancreas. Biochem J. 1983 Feb 15;210(2):353–359. doi: 10.1042/bj2100353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Satir B. H., Garofalo R. S., Gilligan D. M., Maihle N. J. Possible functions of calmodulin in protozoa. Ann N Y Acad Sci. 1980;356:83–91. doi: 10.1111/j.1749-6632.1980.tb29602.x. [DOI] [PubMed] [Google Scholar]
  49. Schubart U. K., Fleischer N., Erlichman J. Ca2+-dependent protein phosphorylation and insulin release in intact hamster insulinoma cells. Inhibition by trifluoperazine. J Biol Chem. 1980 Dec 10;255(23):11063–11066. [PubMed] [Google Scholar]
  50. Selden S. C., Pollard T. D. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem. 1983 Jun 10;258(11):7064–7071. [PubMed] [Google Scholar]
  51. Spearman T. N., Hurley K. P., Olivas R., Ulrich R. G., Butcher F. R. Subcellular location of stimulus-affected endogenous phosphoproteins in the rat parotid gland. J Cell Biol. 1984 Oct;99(4 Pt 1):1354–1363. doi: 10.1083/jcb.99.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Steinhardt R. A., Alderton J. M. Calmodulin confers calcium sensitivity on secretory exocytosis. Nature. 1982 Jan 14;295(5845):154–155. doi: 10.1038/295154a0. [DOI] [PubMed] [Google Scholar]
  53. Stinson R. A., Seargeant L. E. Comparative studies of pure alkaline phosphatases from five human tissues. Clin Chim Acta. 1981 Mar 5;110(2-3):261–272. doi: 10.1016/0009-8981(81)90355-7. [DOI] [PubMed] [Google Scholar]
  54. Theoharides T. C., Sieghart W., Greengard P., Douglas W. W. Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science. 1980 Jan 4;207(4426):80–82. doi: 10.1126/science.6153130. [DOI] [PubMed] [Google Scholar]
  55. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Vilmart-Seuwen J., Kersken H., Stürzl R., Plattner H. ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: an analysis with Paramecium cells in vivo and in vitro. J Cell Biol. 1986 Oct;103(4):1279–1288. doi: 10.1083/jcb.103.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Walter M. F., Schultz J. E. Calcium receptor protein calmodulin isolated from cilia and cells of Paramecium tetraurelia. Eur J Cell Biol. 1981 Apr;24(1):97–100. [PubMed] [Google Scholar]
  58. Wells E., Mann J. Phosphorylation of a mast cell protein in response to treatment with anti-allergic compounds. Implications for the mode of action of sodium cromoglycate. Biochem Pharmacol. 1983 Mar 1;32(5):837–842. doi: 10.1016/0006-2952(83)90585-3. [DOI] [PubMed] [Google Scholar]
  59. Wolff D. J., Sved D. W. The divalent cation dependence of bovine brain calmodulin-dependent phosphatase. J Biol Chem. 1985 Apr 10;260(7):4195–4202. [PubMed] [Google Scholar]
  60. Zieseniss E., Plattner H. Synchronous exocytosis in Paramecium cells involves very rapid (less than or equal to 1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. J Cell Biol. 1985 Dec;101(6):2028–2035. doi: 10.1083/jcb.101.6.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES