Abstract
Since it had been previously shown that in Paramecium cells exocytosis involves the dephosphorylation of a 65-kD phosphoprotein (PP), we tried to induce exocytotic membrane fusion by exogenous phosphatases (alkaline phosphatase or calcineurin [CaN]). The occurrence of calmodulin (CaM) at preformed exocytosis sites (Momayezi, M., H. Kersken, U. Gras, J. Vilmart-Seuwen, and H. Plattner, 1986, J. Histochem. Cytochem., 34:1621-1638) and the current finding of the presence of the 65-kD PP and of a CaN-like protein in cell surface fragments ("cortices") isolated from Paramecium cells led us to also test the effect of antibodies (Ab) against CaM or CaN on exocytosis performance. Microinjected anti-CaN Ab strongly inhibit exocytosis. (Negative results with microinjected anti-CaM Ab can easily be explained by the abundance of CaM.) Alternatively, microinjection of a Ca2+-CaM-CaN complex triggers exocytosis. The same occurs with alkaline phosphatase. All these effects can also be mimicked in vitro with isolated cortices. In vitro exocytosis triggered by adding Ca2+-CaM-CaN or alkaline phosphatase is paralleled by dephosphorylation of the 65-kD PP. Exocytosis can also be inhibited in cortices by anti-CaM Ab or anti- CaN Ab. In wild-type cells, compounds that inhibit phosphatase activity, but none that inhibit kinases or proteases, are able to inhibit exocytosis. Exocytosis cannot be induced by phosphatase injection in a membrane-fusion-deficient mutant strain (nd9-28 degrees C) characterized by a defective organization of exocytosis sites (Beisson, J., M. Lefort-Tran, M. Pouphile, M. Rossignol, and B. Satir, 1976, J. Cell Biol., 69:126-143). We conclude that exocytotic membrane fusion requires an adequate assembly of molecular components to allow for the dephosphorylation of a 65-kD PP and that this step is crucial for the induction of exocytotic membrane fusion in Paramecium cells. In vivo this probably involves a Ca2+-CaM-stimulated CaN-like PP phosphatase.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bader M. F., Hikita T., Trifaró J. M. Calcium-dependent calmodulin binding to chromaffin granule membranes: presence of a 65-kilodalton calmodulin-binding protein. J Neurochem. 1985 Feb;44(2):526–539. doi: 10.1111/j.1471-4159.1985.tb05445.x. [DOI] [PubMed] [Google Scholar]
- Baum B. J., Freiberg J. M., Ito H., Roth G. S., Filburn C. R. beta-Adrenergic regulation of protein phosphorylation and its relationship to exocrine secretion in dispersed rat parotid gland acinar cells. J Biol Chem. 1981 Sep 25;256(18):9731–9736. [PubMed] [Google Scholar]
- Beisson J., Lefort-Tran M., Pouphile M., Rossignol M., Satir B. Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains. J Cell Biol. 1976 Apr;69(1):126–143. doi: 10.1083/jcb.69.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brooks J. C., Brooks M. Protein thiophosphorylation associated with secretory inhibition in permeabilized chromaffin cells. Life Sci. 1985 Nov 18;37(20):1869–1875. doi: 10.1016/0024-3205(85)90003-7. [DOI] [PubMed] [Google Scholar]
- Brooks J. C., Treml S., Brooks M. Thiophosphorylation prevents catecholamine secretion by chemically skinned chromaffin cells. Life Sci. 1984 Jul 30;35(5):569–574. doi: 10.1016/0024-3205(84)90251-0. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D., Geisow M. J. Phosphoproteins of the adrenal chromaffin granule membrane. J Neurochem. 1982 Nov;39(5):1387–1396. doi: 10.1111/j.1471-4159.1982.tb12582.x. [DOI] [PubMed] [Google Scholar]
- Burgoyne R. D. Mechanisms of secretion from adrenal chromaffin cells. Biochim Biophys Acta. 1984 Jun 25;779(2):201–216. doi: 10.1016/0304-4157(84)90009-1. [DOI] [PubMed] [Google Scholar]
- Burnham D. B. Characterization of Ca2+-activated protein phosphatase activity in exocrine pancreas. Biochem J. 1985 Oct 15;231(2):335–341. doi: 10.1042/bj2310335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnham D. B., Williams J. A. Effects of carbachol, cholecystokinin, and insulin on protein phosphorylation in isolated pancreatic acini. J Biol Chem. 1982 Sep 10;257(17):10523–10528. [PubMed] [Google Scholar]
- Côté A., Doucet J. P., Trifaró J. M. Phosphorylation and dephosphorylation of chromaffin cell proteins in response to stimulation. Neuroscience. 1986 Oct;19(2):629–645. doi: 10.1016/0306-4522(86)90286-1. [DOI] [PubMed] [Google Scholar]
- DeLorenzo R. J., Burdette S., Holderness J. Benzodiazepine inhibition of the calcium-calmodulin protein kinase system in brain membrane. Science. 1981 Jul 31;213(4507):546–549. doi: 10.1126/science.6264605. [DOI] [PubMed] [Google Scholar]
- DeLorenzo R. J. The calmodulin hypothesis of neurotransmission. Cell Calcium. 1981 Aug;2(4):365–385. doi: 10.1016/0143-4160(81)90026-9. [DOI] [PubMed] [Google Scholar]
- Ewald D. A., Williams A., Levitan I. B. Modulation of single Ca2+-dependent K+-channel activity by protein phosphorylation. Nature. 1985 Jun 6;315(6019):503–506. doi: 10.1038/315503a0. [DOI] [PubMed] [Google Scholar]
- Freedman S. D., Jamieson J. D. Hormone-induced protein phosphorylation. II. Localization to the ribosomal fraction from rat exocrine pancreas and parotid of a 29,000-dalton protein phosphorylated in situ in response to secretagogues. J Cell Biol. 1982 Dec;95(3):909–917. doi: 10.1083/jcb.95.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gad A. E., Silver B. L., Eytan G. D. Polycation-induced fusion of negatively-charged vesicles. Biochim Biophys Acta. 1982 Aug 25;690(1):124–132. doi: 10.1016/0005-2736(82)90246-2. [DOI] [PubMed] [Google Scholar]
- Gergely P., Erdödi F., Bot G. Heparin inhibits the activity of protein phosphatase-1. FEBS Lett. 1984 Apr 9;169(1):45–48. doi: 10.1016/0014-5793(84)80286-0. [DOI] [PubMed] [Google Scholar]
- Gilligan D. M., Satir B. H. Protein phosphorylation/dephosphorylation and stimulus-secretion coupling in wild type and mutant Paramecium. J Biol Chem. 1982 Dec 10;257(23):13903–13906. [PubMed] [Google Scholar]
- Gratecos D., Fischer E. H. Adenosine 5'-O(3-thiotriphosphate) in the control of phosphorylase activity. Biochem Biophys Res Commun. 1974 Jun 18;58(4):960–967. doi: 10.1016/s0006-291x(74)80237-8. [DOI] [PubMed] [Google Scholar]
- Haga N., Forte M., Ramanathan R., Saimi Y., Takahashi M., Kung C. Purification of a soluble protein controlling ca channel activity in paramecium. Biophys J. 1984 Jan;45(1):130–132. doi: 10.1016/S0006-3495(84)84136-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haga N., Forte M., Saimi Y., Kung C. Microinjection of cytoplasm as a test of complementation in Paramecium. J Cell Biol. 1982 Feb;92(2):559–564. doi: 10.1083/jcb.92.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansburg D., Briles D. E., Davie J. M. Analysis of the diversity of murine antibodies to dextran B1355. I. Generation of a larger, pauci-clonal response by a bacterial vaccine. J Immunol. 1976 Aug;117(2):569–575. [PubMed] [Google Scholar]
- Harris B., Cheek T. R., Burgoyne R. D. Effects of metalloendoproteinase inhibitors on secretion and intracellular free calcium in bovine adrenal chromaffin cells. Biochim Biophys Acta. 1986 Oct 31;889(1):1–5. doi: 10.1016/0167-4889(86)90002-9. [DOI] [PubMed] [Google Scholar]
- Hempstead B. L., Parker C. W., Kulczycki A., Jr Selective phosphorylation of the IgE receptor in antigen-stimulated rat mast cells. Proc Natl Acad Sci U S A. 1983 May;80(10):3050–3053. doi: 10.1073/pnas.80.10.3050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ingebritsen T. S., Cohen P. The protein phosphatases involved in cellular regulation. 1. Classification and substrate specificities. Eur J Biochem. 1983 May 2;132(2):255–261. doi: 10.1111/j.1432-1033.1983.tb07357.x. [DOI] [PubMed] [Google Scholar]
- Iwasa F., Ishiguro K. Calmodulin-binding protein (55K + 17K) of sea urchin eggs has a Ca2+- and calmodulin-dependent phosphoprotein phosphatase activity. J Biochem. 1986 May;99(5):1353–1358. doi: 10.1093/oxfordjournals.jbchem.a135603. [DOI] [PubMed] [Google Scholar]
- Jackson R. C., Ward K. K., Haggerty J. G. Mild proteolytic digestion restores exocytotic activity to N-ethylmaleimide-inactivated cell surface complex from sea urchin eggs. J Cell Biol. 1985 Jul;101(1):6–11. doi: 10.1083/jcb.101.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kenigsberg R. L., Trifaró J. M. Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neuroscience. 1985 Jan;14(1):335–347. doi: 10.1016/0306-4522(85)90183-6. [DOI] [PubMed] [Google Scholar]
- Kersken H., Vilmart-Seuwen J., Momayezi M., Plattner H. Filamentous actin in Paramecium cells: mapping by phalloidin affinity labeling in vivo and in vitro. J Histochem Cytochem. 1986 Apr;34(4):443–454. doi: 10.1177/34.4.2419395. [DOI] [PubMed] [Google Scholar]
- Klee C. B., Krinks M. H., Manalan A. S., Cohen P., Stewart A. A. Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase. Methods Enzymol. 1983;102:227–244. doi: 10.1016/s0076-6879(83)02024-8. [DOI] [PubMed] [Google Scholar]
- Klumpp S., Steiner A. L., Schultz J. E. Immunocytochemical localization of cyclic GMP, cGMP-dependent protein kinase, calmodulin and calcineurin in Paramecium tetraurelia. Eur J Cell Biol. 1983 Nov;32(1):164–170. [PubMed] [Google Scholar]
- Lefort-Tran M., Aufderheide K., Pouphile M., Rossignol M., Beisson J. Control of exocytotic processes: cytological and physiological studies of trichocyst mutants in Paramecium tetraurelia. J Cell Biol. 1981 Feb;88(2):301–311. doi: 10.1083/jcb.88.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Llinás R., McGuinness T. L., Leonard C. S., Sugimori M., Greengard P. Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse. Proc Natl Acad Sci U S A. 1985 May;82(9):3035–3039. doi: 10.1073/pnas.82.9.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maihle N. J., Dedman J. R., Means A. R., Chafouleas J. G., Satir B. H. Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia. J Cell Biol. 1981 Jun;89(3):695–699. doi: 10.1083/jcb.89.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
- Matt H., Bilinski M., Plattner H. Adenosinetriphosphate, calcium and temperature requirements for the final steps of exocytosis in Paramecium cells. J Cell Sci. 1978 Aug;32:67–86. doi: 10.1242/jcs.32.1.67. [DOI] [PubMed] [Google Scholar]
- Momayezi M., Kersken H., Gras U., Vilmart-Seuwen J., Plattner H. Calmodulin in Paramecium tetraurelia: localization from the in vivo to the ultrastructural level. J Histochem Cytochem. 1986 Dec;34(12):1621–1638. doi: 10.1177/34.12.3097118. [DOI] [PubMed] [Google Scholar]
- Mundy D. I., Strittmatter W. J. Requirement for metalloendoprotease in exocytosis: evidence in mast cells and adrenal chromaffin cells. Cell. 1985 Mar;40(3):645–656. doi: 10.1016/0092-8674(85)90213-2. [DOI] [PubMed] [Google Scholar]
- Nestler E. J., Walaas S. I., Greengard P. Neuronal phosphoproteins: physiological and clinical implications. Science. 1984 Sep 21;225(4668):1357–1364. doi: 10.1126/science.6474180. [DOI] [PubMed] [Google Scholar]
- Norling L. L., Colca J. R., Brooks C. L., Kloepper R. F., McDaniel M. L., Landt M. Specificity of inhibition of calcium- and calmodulin-dependent protein kinase by alloxan. Biochim Biophys Acta. 1984 Sep 28;801(2):197–205. doi: 10.1016/0304-4165(84)90068-0. [DOI] [PubMed] [Google Scholar]
- Pallen C. J., Brown M. L., Matsui H., Mitchell K. J., Wang J. H. Survey of calcineurin activity towards nonprotein compounds and identification of phosphoenol pyruvate as a substrate. Biochem Biophys Res Commun. 1985 Sep 30;131(3):1256–1261. doi: 10.1016/0006-291x(85)90226-8. [DOI] [PubMed] [Google Scholar]
- Pallen C. J., Wang J. H. A multifunctional calmodulin-stimulated phosphatase. Arch Biochem Biophys. 1985 Mar;237(2):281–291. doi: 10.1016/0003-9861(85)90279-6. [DOI] [PubMed] [Google Scholar]
- Pallen C. J., Wang J. H. Calmodulin-stimulated dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine by calcineurin. J Biol Chem. 1983 Jul 25;258(14):8550–8553. [PubMed] [Google Scholar]
- Pape R., Plattner H. Synchronous exocytosis in Paramecium cells. V. Ultrastructural adaptation phenomena during re-insertion of secretory organelles. Eur J Cell Biol. 1985 Jan;36(1):38–47. [PubMed] [Google Scholar]
- Plattner H., Reichel K., Matt H., Beisson J., Lefort-Tran M., Pouphile M. Genetic dissection of the final exocytosis steps in Paramecium tetraurelia cells: cytochemical determination of Ca2+-ATPase activity over performed exocytosis sites. J Cell Sci. 1980 Dec;46:17–40. doi: 10.1242/jcs.46.1.17. [DOI] [PubMed] [Google Scholar]
- Plattner H., Stürzl R., Matt H. Synchronous exocytosis in Paramecium cells. IV. Polyamino compounds as potent trigger agents for repeatable trigger-redocking cycles. Eur J Cell Biol. 1985 Jan;36(1):32–37. [PubMed] [Google Scholar]
- Rauh J. J., Nelson D. L. Calmodulin is a major component of extruded trichocysts from Paramecium tetraurelia. J Cell Biol. 1981 Dec;91(3 Pt 1):860–865. doi: 10.1083/jcb.91.3.860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts M. L., Butcher F. R. The involvement of protein phosphorylation in stimulus-secretion coupling in the mouse exocrine pancreas. Biochem J. 1983 Feb 15;210(2):353–359. doi: 10.1042/bj2100353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Satir B. H., Garofalo R. S., Gilligan D. M., Maihle N. J. Possible functions of calmodulin in protozoa. Ann N Y Acad Sci. 1980;356:83–91. doi: 10.1111/j.1749-6632.1980.tb29602.x. [DOI] [PubMed] [Google Scholar]
- Schubart U. K., Fleischer N., Erlichman J. Ca2+-dependent protein phosphorylation and insulin release in intact hamster insulinoma cells. Inhibition by trifluoperazine. J Biol Chem. 1980 Dec 10;255(23):11063–11066. [PubMed] [Google Scholar]
- Selden S. C., Pollard T. D. Phosphorylation of microtubule-associated proteins regulates their interaction with actin filaments. J Biol Chem. 1983 Jun 10;258(11):7064–7071. [PubMed] [Google Scholar]
- Spearman T. N., Hurley K. P., Olivas R., Ulrich R. G., Butcher F. R. Subcellular location of stimulus-affected endogenous phosphoproteins in the rat parotid gland. J Cell Biol. 1984 Oct;99(4 Pt 1):1354–1363. doi: 10.1083/jcb.99.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhardt R. A., Alderton J. M. Calmodulin confers calcium sensitivity on secretory exocytosis. Nature. 1982 Jan 14;295(5845):154–155. doi: 10.1038/295154a0. [DOI] [PubMed] [Google Scholar]
- Stinson R. A., Seargeant L. E. Comparative studies of pure alkaline phosphatases from five human tissues. Clin Chim Acta. 1981 Mar 5;110(2-3):261–272. doi: 10.1016/0009-8981(81)90355-7. [DOI] [PubMed] [Google Scholar]
- Theoharides T. C., Sieghart W., Greengard P., Douglas W. W. Antiallergic drug cromolyn may inhibit histamine secretion by regulating phosphorylation of a mast cell protein. Science. 1980 Jan 4;207(4426):80–82. doi: 10.1126/science.6153130. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vilmart-Seuwen J., Kersken H., Stürzl R., Plattner H. ATP keeps exocytosis sites in a primed state but is not required for membrane fusion: an analysis with Paramecium cells in vivo and in vitro. J Cell Biol. 1986 Oct;103(4):1279–1288. doi: 10.1083/jcb.103.4.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter M. F., Schultz J. E. Calcium receptor protein calmodulin isolated from cilia and cells of Paramecium tetraurelia. Eur J Cell Biol. 1981 Apr;24(1):97–100. [PubMed] [Google Scholar]
- Wells E., Mann J. Phosphorylation of a mast cell protein in response to treatment with anti-allergic compounds. Implications for the mode of action of sodium cromoglycate. Biochem Pharmacol. 1983 Mar 1;32(5):837–842. doi: 10.1016/0006-2952(83)90585-3. [DOI] [PubMed] [Google Scholar]
- Wolff D. J., Sved D. W. The divalent cation dependence of bovine brain calmodulin-dependent phosphatase. J Biol Chem. 1985 Apr 10;260(7):4195–4202. [PubMed] [Google Scholar]
- Zieseniss E., Plattner H. Synchronous exocytosis in Paramecium cells involves very rapid (less than or equal to 1 s), reversible dephosphorylation of a 65-kD phosphoprotein in exocytosis-competent strains. J Cell Biol. 1985 Dec;101(6):2028–2035. doi: 10.1083/jcb.101.6.2028. [DOI] [PMC free article] [PubMed] [Google Scholar]