Abstract
Fibroblasts from dermatosparactic sheep fail to contract collagen gels and show a reduced attachment to collagenous substrates. By comparing collagen-binding membrane proteins of normal (+/+), homozygote (-/-), and heterozygote (+/-) fibroblasts, we present evidence that the interaction of normal fibroblasts with native type I collagen involves a protein of apparent Mr = 34,000 which is absent from dermatosparactic fibroblasts and seems to be related to anchorin CII. This conclusion was reached from the following experiments: (a) On a blot of membrane proteins from normal fibroblasts radioactively labeled type I collagen bound predominantly to a protein band of 34 kD; dermatosparactic membranes revealed only a small amount of binding to a component with a molecular mass of 47 kD. (b) After separation of normal fibroblast membrane proteins on type I collagen-Sepharose, a collagen-binding component of 34 kD was found which was absent from the corresponding fraction of dermatosparactic membranes. (c) Antibodies to anchorin CII stained the surface of normal (+/+), but not of dermatosparactic (-/-) fibroblasts and labeled a 34-kD component after immunoblotting of normal fibroblast membrane proteins. (d) After metabolic labeling of fibroblasts with [35S]methionine and immunoprecipitation with anti- anchorin CII, 40- and 34-kD components were precipitated from extracts of normal fibroblasts, while the latter component was absent from affected cells. Similar differences were found after immunoblotting of membranes from whole normal or affected skin. These data indicate that dermatosparaxis of sheep involves a molecular defect of a collagen- binding protein. Therefore this disease represents a model to study the complex interaction of cells with the extracellular matrix on a molecular level.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bailey A. J., Lapière C. M. Effect of an additional peptide extension of the N-terminus of collagen from dermatosparactic calves on the cross-linking of the collagen fibres. Eur J Biochem. 1973 Apr 2;34(1):91–96. doi: 10.1111/j.1432-1033.1973.tb02732.x. [DOI] [PubMed] [Google Scholar]
- Becker U., Helle O., Timpl R. Characterization of the amino-terminal segment in procollagen palpha2 chain from dermatosparactic sheep. FEBS Lett. 1977 Feb 1;73(2):197–200. doi: 10.1016/0014-5793(77)80979-4. [DOI] [PubMed] [Google Scholar]
- Becker U., Timpl R. NH2-terminal extensions on skin collagen from sheep with a genetic defect in conversion of procollagen into collagen. Biochemistry. 1976 Jun 29;15(13):2853–2862. doi: 10.1021/bi00658a024. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Cates G. A., Holland P. C. Biosynthesis of plasma-membrane proteins during myogenesis of skeletal muscle in vitro. Biochem J. 1978 Sep 15;174(3):873–881. doi: 10.1042/bj1740873. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiang T. M., Kang A. H. Isolation and purification of collagen alpha 1(I) receptor from human platelet membrane. J Biol Chem. 1982 Jul 10;257(13):7581–7586. [PubMed] [Google Scholar]
- Dedhar S., Ruoslahti E., Pierschbacher M. D. A cell surface receptor complex for collagen type I recognizes the Arg-Gly-Asp sequence. J Cell Biol. 1987 Mar;104(3):585–593. doi: 10.1083/jcb.104.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Delvoye P., Mauch C., Krieg T., Lapiere C. M. Contraction of collagen lattices by fibroblasts from patients and animals with heritable disorders of connective tissue. Br J Dermatol. 1986 Aug;115(2):139–146. doi: 10.1111/j.1365-2133.1986.tb05709.x. [DOI] [PubMed] [Google Scholar]
- Delvoye P., Nusgens B., Lapière C. M. The capacity of retracting a collagen matrix is lost by dermatosparactic skin fibroblasts. J Invest Dermatol. 1983 Sep;81(3):267–270. doi: 10.1111/1523-1747.ep12518288. [DOI] [PubMed] [Google Scholar]
- Dessau W., Vertel B. M., von der Mark H., von der Mark K. Extracellular matrix formation by chondrocytes in monolayer culture. J Cell Biol. 1981 Jul;90(1):78–83. doi: 10.1083/jcb.90.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fjolstad M., Helle O. A hereditary dysplasia of collagen tissues in sheep. J Pathol. 1974 Mar;112(3):183–188. doi: 10.1002/path.1711120309. [DOI] [PubMed] [Google Scholar]
- GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Tack B. F. Amino-terminal sequence of p36 and associated p10: identification of the site of tyrosine phosphorylation and homology with S-100. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7884–7888. doi: 10.1073/pnas.82.23.7884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg B. Binding of soluble type I collagen molecules to the fibroblast plasma membrane. Cell. 1979 Feb;16(2):265–275. doi: 10.1016/0092-8674(79)90004-7. [DOI] [PubMed] [Google Scholar]
- Grinnell F., Minter D. Attachment and spreading of baby hamster kidney cells to collagen substrata: effects of cold-insoluble globulin. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4408–4412. doi: 10.1073/pnas.75.9.4408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hasegawa T., Hasegawa E., Chen W. T., Yamada K. M. Characterization of a membrane-associated glycoprotein complex implicated in cell adhesion to fibronectin. J Cell Biochem. 1985;28(4):307–318. doi: 10.1002/jcb.240280409. [DOI] [PubMed] [Google Scholar]
- Hughes R. C., Taylor A., Sage H., Hogan B. L. Distinct patterns of glycosylation of colligin, a collagen-binding glycoprotein, and SPARC (osteonectin), a secreted Ca2+-binding glycoprotein. Evidence for the localisation of colligin in the endoplasmic reticulum. Eur J Biochem. 1987 Feb 16;163(1):57–65. doi: 10.1111/j.1432-1033.1987.tb10736.x. [DOI] [PubMed] [Google Scholar]
- Kessler S. W. Cell membrane antigen isolation with the staphylococcal protein A-antibody adsorbent. J Immunol. 1976 Nov;117(5 Pt 1):1482–1490. [PubMed] [Google Scholar]
- Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koda J. E., Rapraeger A., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem. 1985 Jul 5;260(13):8157–8162. [PubMed] [Google Scholar]
- Krieg T., Aumailley M., Dessau W., Wiestner M., Müller P. Synthesis of collagen by human fibroblasts and their SV40 transformants. Exp Cell Res. 1980 Jan;125(1):23–30. doi: 10.1016/0014-4827(80)90184-6. [DOI] [PubMed] [Google Scholar]
- Kurkinen M., Taylor A., Garrels J. I., Hogan B. L. Cell surface-associated proteins which bind native type IV collagen or gelatin. J Biol Chem. 1984 May 10;259(9):5915–5922. [PubMed] [Google Scholar]
- Lapière C. M., Lenaers A., Kohn L. D. Procollagen peptidase: an enzyme excising the coordination peptides of procollagen. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3054–3058. doi: 10.1073/pnas.68.12.3054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lichtenstein J. R., Martin G. R., Kohn L. D., Byers P. H., McKusick V. A. Defect in conversion of procollagen to collagen in a form of Ehlers-Danlos syndrome. Science. 1973 Oct 19;182(4109):298–300. doi: 10.1126/science.182.4109.298. [DOI] [PubMed] [Google Scholar]
- Linsenmayer T. F., Gibney E., Toole B. P., Gross J. Cellular adhesion to collagen. Exp Cell Res. 1978 Oct 15;116(2):470–474. doi: 10.1016/0014-4827(78)90473-1. [DOI] [PubMed] [Google Scholar]
- Mauch C., Aumailley M., Paye M., Lapière C. M., Timpl R., Krieg T. Defective attachment of dermatosparactic fibroblasts to collagens I and IV. Exp Cell Res. 1986 Apr;163(2):294–300. doi: 10.1016/0014-4827(86)90060-1. [DOI] [PubMed] [Google Scholar]
- Minor R. R., Sippola-Thiele M., McKeon J., Berger J., Prockop D. J. Defects in the processing of procollagen to collagen are demonstrable in cultured fibroblasts from patients with the Ehlers-Danlos and osteogenesis imperfecta syndromes. J Biol Chem. 1986 Jul 25;261(21):10006–10014. [PubMed] [Google Scholar]
- Mollenhauer J., Bee J. A., Lizarbe M. A., von der Mark K. Role of anchorin CII, a 31,000-mol-wt membrane protein, in the interaction of chondrocytes with type II collagen. J Cell Biol. 1984 Apr;98(4):1572–1579. doi: 10.1083/jcb.98.4.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mollenhauer J., von der Mark K. Isolation and characterization of a collagen-binding glycoprotein from chondrocyte membranes. EMBO J. 1983;2(1):45–50. doi: 10.1002/j.1460-2075.1983.tb01378.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagata K., Saga S., Yamada K. M. A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein. J Cell Biol. 1986 Jul;103(1):223–229. doi: 10.1083/jcb.103.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Hara P. J., Read W. K., Romane W. M., Bridges C. H. A collagenous tissue dysplasia of calves. Lab Invest. 1970 Sep;23(3):307–314. [PubMed] [Google Scholar]
- Orci L., Glick B. S., Rothman J. E. A new type of coated vesicular carrier that appears not to contain clathrin: its possible role in protein transport within the Golgi stack. Cell. 1986 Jul 18;46(2):171–184. doi: 10.1016/0092-8674(86)90734-8. [DOI] [PubMed] [Google Scholar]
- Prockop D. J., Kivirikko K. I. Heritable diseases of collagen. N Engl J Med. 1984 Aug 9;311(6):376–386. doi: 10.1056/NEJM198408093110606. [DOI] [PubMed] [Google Scholar]
- Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
- Rohde H., Becker U., Nowack H., Timpl R. Antigenic structure of the aminoterminal region in type I procollagen. Characterization of sequential and conformational determinants. Immunochemistry. 1976 Dec;13(12):967–974. doi: 10.1016/0019-2791(76)90266-4. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Hayman E. G., Pierschbacher M. D. Extracellular matrices and cell adhesion. Arteriosclerosis. 1985 Nov-Dec;5(6):581–594. doi: 10.1161/01.atv.5.6.581. [DOI] [PubMed] [Google Scholar]
- Saris C. J., Tack B. F., Kristensen T., Glenney J. R., Jr, Hunter T. The cDNA sequence for the protein-tyrosine kinase substrate p36 (calpactin I heavy chain) reveals a multidomain protein with internal repeats. Cell. 1986 Jul 18;46(2):201–212. doi: 10.1016/0092-8674(86)90737-3. [DOI] [PubMed] [Google Scholar]
- Shinkai H., Lapiere C. M. Characterization of oligosaccharide units of p-N-collagen type III from dermatosparactic bovine skin. Biochim Biophys Acta. 1983 Jul 5;758(1):30–36. doi: 10.1016/0304-4165(83)90006-5. [DOI] [PubMed] [Google Scholar]
- Steinmann B., Tuderman L., Peltonen L., Martin G. R., McKusick V. A., Prockop D. J. Evidence for a structural mutation of procollagen type I in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem. 1980 Sep 25;255(18):8887–8893. [PubMed] [Google Scholar]
- Weber L., Kirsch E., Müller P., Krieg T. Collagen type distribution and macromolecular organization of connective tissue in different layers of human skin. J Invest Dermatol. 1984 Feb;82(2):156–160. doi: 10.1111/1523-1747.ep12259720. [DOI] [PubMed] [Google Scholar]
- Wick G., Olsen B. R., Timpl R. Immunohistologic analysis of fetal and dermatosparactic calf and sheep skin with antisera to procollagen and collagen type I. Lab Invest. 1978 Aug;39(2):151–156. [PubMed] [Google Scholar]
- Wiestner M., Rohde H., Helle O., Krieg T., Timpl R., Müller P. K. Low rate of procollagen conversion in dermatosparactic sheep fibroblasts is paralleled by increased synthesis of type I and type III collagens. EMBO J. 1982;1(4):513–516. doi: 10.1002/j.1460-2075.1982.tb01200.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von der Mark H., von der Mark K., Gay S. Study of differential collagen synthesis during development of the chick embryo by immunofluorescence. I. Preparation of collagen type I and type II specific antibodies and their application to early stages of the chick embryo. Dev Biol. 1976 Feb;48(2):237–249. doi: 10.1016/0012-1606(76)90088-9. [DOI] [PubMed] [Google Scholar]
- von der Mark K., Mollenhauer J., Müller P. K., Pfäffle M. Anchorin CII, a type II collagen-binding glycoprotein from chondrocyte membranes. Ann N Y Acad Sci. 1985;460:214–223. doi: 10.1111/j.1749-6632.1985.tb51169.x. [DOI] [PubMed] [Google Scholar]
