Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jan 1;106(1):51–59. doi: 10.1083/jcb.106.1.51

Endocrine secretory granules and neuronal synaptic vesicles have three integral membrane proteins in common

PMCID: PMC2114944  PMID: 3276713

Abstract

In response to an external stimulus, neuronal cells release neurotransmitters from small synaptic vesicles and endocrine cells release secretory proteins from large dense core granules. Despite these differences, endocrine cells express three proteins known to be components of synaptic vesicle membranes. To determine if all three proteins, p38, p65, and SV2, are present in endocrine dense core granule membranes, monoclonal antibodies bound to beads were used to immunoisolate organelles containing the synaptic vesicle antigens. [3H]norepinephrine was used to label both chromaffin granules purified from the bovine adrenal medulla and rat pheochromocytoma (PC12) cells. Up to 80% of the vesicular [3H]norepinephrine was immunoisolated from both labeled purified bovine chromaffin granules and PC12 postnuclear supernatants. In PC12 cells transfected with DNA encoding human growth hormone, the hormone was packaged and released with norepinephrine. 90% of the sedimentable hormone was also immunoisolated by antibodies to all three proteins. Stimulated secretion of PC12 cells via depolarization with 50 mM KCl decreased the amount of [3H]norepinephrine or human growth hormone immunoisolated. Electron microscopy of the immunoisolated fractions revealed large (greater than 100 nm diameter) dense core vesicles adherent to the beads. Thus, large dense core vesicles containing secretory proteins possess all three of the known synaptic vesicle membrane proteins.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson D. J., Axel R. A bipotential neuroendocrine precursor whose choice of cell fate is determined by NGF and glucocorticoids. Cell. 1986 Dec 26;47(6):1079–1090. doi: 10.1016/0092-8674(86)90823-8. [DOI] [PubMed] [Google Scholar]
  2. Bartlett S. F., Smith A. D. Adrenal chromaffin granules: isolation and disassembly. Methods Enzymol. 1974;31:379–389. doi: 10.1016/0076-6879(74)31042-7. [DOI] [PubMed] [Google Scholar]
  3. Buckley K., Kelly R. B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol. 1985 Apr;100(4):1284–1294. doi: 10.1083/jcb.100.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ceccarelli B., Hurlbut W. P., Mauro A. Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):499–524. doi: 10.1083/jcb.57.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Floor E., Leeman S. E. Evidence that large synaptic vesicles containing substance P and small synaptic vesicles have a surface antigen in common in rat. Neurosci Lett. 1985 Sep 30;60(2):231–237. doi: 10.1016/0304-3940(85)90249-6. [DOI] [PubMed] [Google Scholar]
  6. Geffen L. B., Ostberg A. Distribution of granular vesicles in normal and constricted sympathetic neurones. J Physiol. 1969 Oct;204(3):583–592. doi: 10.1113/jphysiol.1969.sp008933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Geuze H. J., Slot J. W., Schwartz A. L. Membranes of sorting organelles display lateral heterogeneity in receptor distribution. J Cell Biol. 1987 Jun;104(6):1715–1723. doi: 10.1083/jcb.104.6.1715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Greene L. A., Rein G. Release, storage and uptake of catecholamines by a clonal cell line of nerve growth factor (NGF) responsive pheo-chromocytoma cells. Brain Res. 1977 Jul 1;129(2):247–263. doi: 10.1016/0006-8993(77)90005-1. [DOI] [PubMed] [Google Scholar]
  9. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gumbiner B., Kelly R. B. Two distinct intracellular pathways transport secretory and membrane glycoproteins to the surface of pituitary tumor cells. Cell. 1982 Jan;28(1):51–59. doi: 10.1016/0092-8674(82)90374-9. [DOI] [PubMed] [Google Scholar]
  11. Heuser J. E., Reese T. S. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol. 1973 May;57(2):315–344. doi: 10.1083/jcb.57.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jahn R., Schiebler W., Ouimet C., Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4137–4141. doi: 10.1073/pnas.82.12.4137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Le Roith D., Shiloach J., Roth J. Is there an earlier phylogenetic precursor that is common to both the nervous and endocrine systems? Peptides. 1982 May-Jun;3(3):211–215. doi: 10.1016/0196-9781(82)90080-8. [DOI] [PubMed] [Google Scholar]
  16. Matthew W. D., Tsavaler L., Reichardt L. F. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol. 1981 Oct;91(1):257–269. doi: 10.1083/jcb.91.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Navone F., Jahn R., Di Gioia G., Stukenbrok H., Greengard P., De Camilli P. Protein p38: an integral membrane protein specific for small vesicles of neurons and neuroendocrine cells. J Cell Biol. 1986 Dec;103(6 Pt 1):2511–2527. doi: 10.1083/jcb.103.6.2511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neuman B., Wiedermann C. J., Fischer-Colbrie R., Schober M., Sperk G., Winkler H. Biochemical and functional properties of large and small dense-core vesicles in sympathetic nerves of rat and ox vas deferens. Neuroscience. 1984 Nov;13(3):921–931. doi: 10.1016/0306-4522(84)90106-4. [DOI] [PubMed] [Google Scholar]
  19. Palmiter R. D., Norstedt G., Gelinas R. E., Hammer R. E., Brinster R. L. Metallothionein-human GH fusion genes stimulate growth of mice. Science. 1983 Nov 18;222(4625):809–814. doi: 10.1126/science.6356363. [DOI] [PubMed] [Google Scholar]
  20. Patzak A., Winkler H. Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabeling. J Cell Biol. 1986 Feb;102(2):510–515. doi: 10.1083/jcb.102.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rebois R. V., Reynolds E. E., Toll L., Howard B. D. Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry. 1980 Mar 18;19(6):1240–1248. doi: 10.1021/bi00547a031. [DOI] [PubMed] [Google Scholar]
  22. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  23. Schubert D., Klier F. G. Storage and release of acetylcholine by a clonal cell line. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5184–5188. doi: 10.1073/pnas.74.11.5184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schweitzer E. S., Kelly R. B. Selective packaging of human growth hormone into synaptic vesicles in a rat neuronal (PC12) cell line. J Cell Biol. 1985 Aug;101(2):667–676. doi: 10.1083/jcb.101.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Stanley P. E., Williams S. G. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal Biochem. 1969 Jun;29(3):381–392. doi: 10.1016/0003-2697(69)90323-6. [DOI] [PubMed] [Google Scholar]
  26. Thureson-Klein A. Exocytosis from large and small dense cored vesicles in noradrenergic nerve terminals. Neuroscience. 1983 Oct;10(2):245–259. doi: 10.1016/0306-4522(83)90132-x. [DOI] [PubMed] [Google Scholar]
  27. Tomlinson D. R. Two populations or granular vesicles in constricted post-ganglionic sympathetic nerves. J Physiol. 1975 Mar;245(3):727–735. doi: 10.1113/jphysiol.1975.sp010871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wagner J. A. Structure of catecholamine secretory vesicles from PC12 cells. J Neurochem. 1985 Oct;45(4):1244–1253. doi: 10.1111/j.1471-4159.1985.tb05549.x. [DOI] [PubMed] [Google Scholar]
  29. Wiedenmann B., Franke W. W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985 Jul;41(3):1017–1028. doi: 10.1016/s0092-8674(85)80082-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES