Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Jan 1;106(1):133–140. doi: 10.1083/jcb.106.1.133

Isolation of a sixth dynein subunit adenosine triphosphatase of Chlamydomonas axonemes

PMCID: PMC2114948  PMID: 2963009

Abstract

This study of the axoneme led to the identification of a previously unknown adenosine triphosphatase (ATPase), which is likely a major component of inner dynein arms. The ATPase was isolated from a soluble fraction of axonemes obtained from pf 28, a Chlamydomonas mutant lacking the outer dynein arms. The activity hydrolyzed up to 2.3 mumol of ATP.min-1.mg-1 of protein (at pH 7.2, in the presence of both Ca++ and Mg++), had a sedimentation coefficient of 11S in sucrose gradient, and cosedimented with four polypeptides of apparent molecular weight 325,000, 315,000 140,000, and 42,000. Several arguments indicate that the new ATPase is a component of the inner dynein arms. Three or four polypeptides cosedimenting with the activity belong to a group of axonemal components that are deficient in the axonemes of pf 23 and pf 30, two mutants that display different levels of inner dynein arm deficiency. The 42,000 component is axonemal actin, a subunit of two other inner dynein ATPases. The two polypeptides of molecular weight greater than 300,000 have electrophoretic mobility similar to that of high molecular weight components of outer and inner dynein arms. In spite of some similarities each ATPase isolated from inner or outer arms is composed of a different set of polypeptides. Different ATPases may be required for the modulation of localized sliding of adjacent outer double microtubules in the axoneme.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brokaw C. J., Kamiya R. Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton. 1987;8(1):68–75. doi: 10.1002/cm.970080110. [DOI] [PubMed] [Google Scholar]
  2. Goodenough U. W., Gebhart B., Mermall V., Mitchell D. R., Heuser J. E. High-pressure liquid chromatography fractionation of Chlamydomonas dynein extracts and characterization of inner-arm dynein subunits. J Mol Biol. 1987 Apr 5;194(3):481–494. doi: 10.1016/0022-2836(87)90676-0. [DOI] [PubMed] [Google Scholar]
  3. Goodenough U. W., Heuser J. E. Outer and inner dynein arms of cilia and flagella. Cell. 1985 Jun;41(2):341–342. doi: 10.1016/s0092-8674(85)80003-9. [DOI] [PubMed] [Google Scholar]
  4. Goodenough U. W., Heuser J. E. Substructure of inner dynein arms, radial spokes, and the central pair/projection complex of cilia and flagella. J Cell Biol. 1985 Jun;100(6):2008–2018. doi: 10.1083/jcb.100.6.2008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Huang B., Piperno G., Luck D. J. Paralyzed flagella mutants of Chlamydomonas reinhardtii. Defective for axonemal doublet microtubule arms. J Biol Chem. 1979 Apr 25;254(8):3091–3099. [PubMed] [Google Scholar]
  6. Johnson K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu Rev Biophys Biophys Chem. 1985;14:161–188. doi: 10.1146/annurev.bb.14.060185.001113. [DOI] [PubMed] [Google Scholar]
  7. Kamiya R., Okamoto M. A mutant of Chlamydomonas reinhardtii that lacks the flagellar outer dynein arm but can swim. J Cell Sci. 1985 Mar;74:181–191. doi: 10.1242/jcs.74.1.181. [DOI] [PubMed] [Google Scholar]
  8. King S. M., Otter T., Witman G. B. Characterization of monoclonal antibodies against Chlamydomonas flagellar dyneins by high-resolution protein blotting. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4717–4721. doi: 10.1073/pnas.82.14.4717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Luck D., Piperno G., Ramanis Z., Huang B. Flagellar mutants of Chlamydomonas: studies of radial spoke-defective strains by dikaryon and revertant analysis. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3456–3460. doi: 10.1073/pnas.74.8.3456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mitchell D. R., Rosenbaum J. L. A motile Chlamydomonas flagellar mutant that lacks outer dynein arms. J Cell Biol. 1985 Apr;100(4):1228–1234. doi: 10.1083/jcb.100.4.1228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
  12. Okagaki T., Kamiya R. Microtubule sliding in mutant Chlamydomonas axonemes devoid of outer or inner dynein arms. J Cell Biol. 1986 Nov;103(5):1895–1902. doi: 10.1083/jcb.103.5.1895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pfister K. K., Fay R. B., Witman G. B. Purification and polypeptide composition of dynein ATPases from Chlamydomonas flagella. Cell Motil. 1982;2(6):525–547. doi: 10.1002/cm.970020604. [DOI] [PubMed] [Google Scholar]
  14. Pfister K. K., Haley B. E., Witman G. B. The photoaffinity probe 8-azidoadenosine 5'-triphosphate selectively labels the heavy chain of Chlamydomonas 12 S dynein. J Biol Chem. 1984 Jul 10;259(13):8499–8504. [PubMed] [Google Scholar]
  15. Pfister K. K., Witman G. B. Subfractionation of Chlamydomonas 18 S dynein into two unique subunits containing ATPase activity. J Biol Chem. 1984 Oct 10;259(19):12072–12080. [PubMed] [Google Scholar]
  16. Piperno G., Fuller M. T. Monoclonal antibodies specific for an acetylated form of alpha-tubulin recognize the antigen in cilia and flagella from a variety of organisms. J Cell Biol. 1985 Dec;101(6):2085–2094. doi: 10.1083/jcb.101.6.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Piperno G., Luck D. J. An actin-like protein is a component of axonemes from Chlamydomonas flagella. J Biol Chem. 1979 Apr 10;254(7):2187–2190. [PubMed] [Google Scholar]
  18. Piperno G., Luck D. J. Axonemal adenosine triphosphatases from flagella of Chlamydomonas reinhardtii. Purification of two dyneins. J Biol Chem. 1979 Apr 25;254(8):3084–3090. [PubMed] [Google Scholar]
  19. Piperno G., Luck D. J. Inner arm dyneins from flagella of Chlamydomonas reinhardtii. Cell. 1981 Dec;27(2 Pt 1):331–340. doi: 10.1016/0092-8674(81)90416-5. [DOI] [PubMed] [Google Scholar]
  20. Piperno G., Luck D. J. Outer and inner arm dyneins from flagella of Chlamydomonas reinhardtii. Prog Clin Biol Res. 1982;80:95–99. doi: 10.1002/cm.970020719. [DOI] [PubMed] [Google Scholar]
  21. Piperno G. Monoclonal antibodies to dynein subunits reveal the existence of cytoplasmic antigens in sea urchin egg. J Cell Biol. 1984 May;98(5):1842–1850. doi: 10.1083/jcb.98.5.1842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tang W. J., Bell C. W., Sale W. S., Gibbons I. R. Structure of the dynein-1 outer arm in sea urchin sperm flagella. I. Analysis by separation of subunits. J Biol Chem. 1982 Jan 10;257(1):508–515. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES