Abstract
The differentiated phenotype of rabbit articular chondrocytes was modulated in primary culture by treatment with 1 microgram/ml retinoic acid (RA) and reexpressed in secondary culture by treatment with the microfilament-disruptive drug dihydrocytochalasin B (DHCB) in the absence of RA. Because the effective dose of DHCB (3 microM) did not elicit detectable cell rounding or retraction, the nature and extent of microfilament modification responsible for induction of reexpression was evaluated. The network of microfilament stress fibers detected with rhodamine-labeled phalloidin in primary control chondrocytes was altered by RA to a "cobblestone" pattern of circularly oriented fibers at the cell periphery. Subsequent treatment with DHCB resulted in rapid changes in this pattern before overt reexpression. Stress fibers decreased in number and were reoriented. Parallel arrays of long fibers that traversed the cell were evident, in addition to fiber fragments and focal condensations of staining. Immunofluorescent staining of intermediate filaments revealed a marked decrease in complexity and intensity during RA treatment but no change during reexpression. An extended microtubular architecture was present throughout the study. These results clearly identify microfilaments as the principal affected cytoskeletal element and demonstrate that their modification, rather than complete disruption, is sufficient for reexpression. The specificity of DHCB and the reorientation of these filaments before reexpression of the differentiated phenotype suggests a causative role in the mechanism of reexpression.
Full Text
The Full Text of this article is available as a PDF (4.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali I. U., Hynes R. O. Effects of cytochalasin B and colchicine on attachment of a major surface protein of fibroblasts. Biochim Biophys Acta. 1977 Nov 15;471(1):16–24. doi: 10.1016/0005-2736(77)90388-1. [DOI] [PubMed] [Google Scholar]
- Atlas S. J., Lin S. Dihydrocytochalasin B. Biological effects and binding to 3T3 cells. J Cell Biol. 1978 Feb;76(2):360–370. doi: 10.1083/jcb.76.2.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ben-Ze'ev A. Differential control of cytokeratins and vimentin synthesis by cell-cell contact and cell spreading in cultured epithelial cells. J Cell Biol. 1984 Oct;99(4 Pt 1):1424–1433. doi: 10.1083/jcb.99.4.1424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benya P. D., Brown P. D., Padilla S. R. Microfilament modification by dihydrocytochalasin B causes retinoic acid-modulated chondrocytes to reexpress the differentiated collagen phenotype without a change in shape. J Cell Biol. 1988 Jan;106(1):161–170. doi: 10.1083/jcb.106.1.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Benya P. D., Padilla S. R. Modulation of the rabbit chondrocyte phenotype by retinoic acid terminates type II collagen synthesis without inducing type I collagen: the modulated phenotype differs from that produced by subculture. Dev Biol. 1986 Nov;118(1):296–305. doi: 10.1016/0012-1606(86)90096-5. [DOI] [PubMed] [Google Scholar]
- Benya P. D., Padilla S. R., Nimni M. E. Independent regulation of collagen types by chondrocytes during the loss of differentiated function in culture. Cell. 1978 Dec;15(4):1313–1321. doi: 10.1016/0092-8674(78)90056-9. [DOI] [PubMed] [Google Scholar]
- Benya P. D., Shaffer J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 1982 Aug;30(1):215–224. doi: 10.1016/0092-8674(82)90027-7. [DOI] [PubMed] [Google Scholar]
- Bernard B. A., De Luca L. M., Hassell J. R., Yamada K. M., Olden K. Retinoic acid alters the proportion of high mannose to complex type oligosaccharides on fibronectin secreted by cultured chondrocytes. J Biol Chem. 1984 Apr 25;259(8):5310–5315. [PubMed] [Google Scholar]
- Bonder E. M., Mooseker M. S. Cytochalasin B slows but does not prevent monomer addition at the barbed end of the actin filament. J Cell Biol. 1986 Jan;102(1):282–288. doi: 10.1083/jcb.102.1.282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown P. J., Juliano R. L. Expression and function of a putative cell surface receptor for fibronectin in hamster and human cell lines. J Cell Biol. 1986 Oct;103(4):1595–1603. doi: 10.1083/jcb.103.4.1595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hassell J. R., Pennypacker J. P., Kleinman H. K., Pratt R. M., Yamada K. M. Enhanced cellular fibronectin accumulation in chondrocytes treated with vitamin A. Cell. 1979 Aug;17(4):821–826. doi: 10.1016/0092-8674(79)90322-2. [DOI] [PubMed] [Google Scholar]
- Horton W., Hassell J. R. Independence of cell shape and loss of cartilage matrix production during retinoic acid treatment of cultured chondrocytes. Dev Biol. 1986 Jun;115(2):392–397. doi: 10.1016/0012-1606(86)90258-7. [DOI] [PubMed] [Google Scholar]
- Kato Y., Gospodarowicz D. Effect of exogenous extracellular matrices on proteoglycan synthesis by cultured rabbit costal chondrocytes. J Cell Biol. 1985 Feb;100(2):486–495. doi: 10.1083/jcb.100.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lazarides E. Antibody production and immunofluorescent characterization of actin and contractile proteins. Methods Cell Biol. 1982;24:313–331. doi: 10.1016/s0091-679x(08)60664-0. [DOI] [PubMed] [Google Scholar]
- MacLean-Fletcher S., Pollard T. D. Mechanism of action of cytochalasin B on actin. Cell. 1980 Jun;20(2):329–341. doi: 10.1016/0092-8674(80)90619-4. [DOI] [PubMed] [Google Scholar]
- Osborn M., Weber K. Immunofluorescence and immunocytochemical procedures with affinity purified antibodies: tubulin-containing structures. Methods Cell Biol. 1982;24:97–132. doi: 10.1016/s0091-679x(08)60650-0. [DOI] [PubMed] [Google Scholar]
- Pennypacker J. P., Hassell J. R., Yamada K. M., Pratt R. M. The influence of an adhesive cell surface protein on chondrogenic expression in vitro. Exp Cell Res. 1979 Jul;121(2):411–415. doi: 10.1016/0014-4827(79)90022-3. [DOI] [PubMed] [Google Scholar]
- Rosen D. M., Stempien S. A., Thompson A. Y., Brennan J. E., Ellingsworth L. R., Seyedin S. M. Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin B. Exp Cell Res. 1986 Jul;165(1):127–138. doi: 10.1016/0014-4827(86)90538-0. [DOI] [PubMed] [Google Scholar]
- Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer I. I., Paradiso P. R. A transmembrane relationship between fibronectin and vinculin (130 kd protein): serum modulation in normal and transformed hamster fibroblasts. Cell. 1981 May;24(2):481–492. doi: 10.1016/0092-8674(81)90339-1. [DOI] [PubMed] [Google Scholar]
- Swalla B. J., Solursh M. Inhibition of limb chondrogenesis by fibronectin. Differentiation. 1984;26(1):42–48. doi: 10.1111/j.1432-0436.1984.tb01371.x. [DOI] [PubMed] [Google Scholar]
- Unemori E. N., Werb Z. Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels. J Cell Biol. 1986 Sep;103(3):1021–1031. doi: 10.1083/jcb.103.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weber K., Rathke P. C., Osborn M., Franke W. W. Distribution of actin and tubulin in cells and in glycerinated cell models after treatment with cytochalasin B (CB). Exp Cell Res. 1976 Oct 15;102(2):285–297. doi: 10.1016/0014-4827(76)90044-6. [DOI] [PubMed] [Google Scholar]
- West C. M., Lanza R., Rosenbloom J., Lowe M., Holtzer H., Avdalovic N. Fibronectin alters the phenotypic properties of cultured chick embryo chondroblasts. Cell. 1979 Jul;17(3):491–501. doi: 10.1016/0092-8674(79)90257-5. [DOI] [PubMed] [Google Scholar]
- West C. M., de Weerd H., Dowdy K., de la Paz A. A specificity for cellular fibronectin in its effect on cultured chondroblasts. Differentiation. 1984;27(1):67–73. doi: 10.1111/j.1432-0436.1984.tb01409.x. [DOI] [PubMed] [Google Scholar]
- Zanetti N. C., Solursh M. Induction of chondrogenesis in limb mesenchymal cultures by disruption of the actin cytoskeleton. J Cell Biol. 1984 Jul;99(1 Pt 1):115–123. doi: 10.1083/jcb.99.1.115. [DOI] [PMC free article] [PubMed] [Google Scholar]