Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Feb 1;106(2):345–353. doi: 10.1083/jcb.106.2.345

Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs

PMCID: PMC2114965  PMID: 3123497

Abstract

Periodic increases in intracellular free calcium occur upon fertilization of golden hamster eggs (Miyazaki et al. 1986. Dev. Biol. 118:259-267). To investigate the underlying mechanism, inositol 1,4,5- trisphosphate (IP3) and guanine nucleotides were microinjected into the egg while Ca2+ transients were monitored by aequorin luminescence and/or hyperpolarization in the membrane potential, which indicates the exact timing and spatial distribution of the Ca2+ rise. Injection of IP3 induced an immediate Ca2+ transient of 13-18 s in the entire egg. The critical concentration of IP3 was 80 nM in the injection pipette (2 nM in the egg, assuming uniform distribution); the effect was all-or- none. The Ca2+ rise occurred even in Ca-free external medium. Injection of 5 mM GTP or 0.33 mM guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S) (calculated intracellular concentration, 200 or 12 microM, respectively) caused a similar Ca2+ transient with a delay of 160-200 s. More than 50 microM GTP gamma S produced recurring and attenuating Ca2+ transients in a local area of the cytoplasm, with an initial delay of 25-40 s and intervals of 45-60 s. In Ca-free medium the first one to two Ca2+ transients occurred but succeeding ones were absent. Preinjection of guanosine-5'-O-(2-thiodiphosphate) inhibited the occurrence of both GTP gamma S-induced and sperm-induced Ca2+ transients in a dose-dependent manner. Neither pertussis nor cholera toxins had effect. It was proposed that sperm-egg interaction activates a GTP-binding protein that stimulates production of IP3, causing the first one to two Ca releases from internal stores, and also stimulates a pathway for elevation of Ca2+ permeability in the plasma membrane, thereby sustaining the repeated Ca2+ releases.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Busa W. B., Ferguson J. E., Joseph S. K., Williamson J. R., Nuccitelli R. Activation of frog (Xenopus laevis) eggs by inositol trisphosphate. I. Characterization of Ca2+ release from intracellular stores. J Cell Biol. 1985 Aug;101(2):677–682. doi: 10.1083/jcb.101.2.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Clapper D. L., Lee H. C. Inositol trisphosphate induces calcium release from nonmitochondrial stores i sea urchin egg homogenates. J Biol Chem. 1985 Nov 15;260(26):13947–13954. [PubMed] [Google Scholar]
  3. Cockcroft S., Gomperts B. D. Role of guanine nucleotide binding protein in the activation of polyphosphoinositide phosphodiesterase. Nature. 1985 Apr 11;314(6011):534–536. doi: 10.1038/314534a0. [DOI] [PubMed] [Google Scholar]
  4. Epel D. Mechanisms of activation of sperm and egg during fertilization of sea urchin gametes. Curr Top Dev Biol. 1978;12:185–246. doi: 10.1016/s0070-2153(08)60597-9. [DOI] [PubMed] [Google Scholar]
  5. Igusa Y., Miyazaki S. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J Physiol. 1983 Jul;340:611–632. doi: 10.1113/jphysiol.1983.sp014783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Igusa Y., Miyazaki S. Periodic increase of cytoplasmic free calcium in fertilized hamster eggs measured with calcium-sensitive electrodes. J Physiol. 1986 Aug;377:193–205. doi: 10.1113/jphysiol.1986.sp016181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Igusa Y., Miyazaki S., Yamashita N. Periodic hyperpolarizing responses in hamster and mouse eggs fertilized with mouse sperm. J Physiol. 1983 Jul;340:633–647. doi: 10.1113/jphysiol.1983.sp014784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Irvine R. F., Moor R. M. Inositol(1,3,4,5)tetrakisphosphate-induced activation of sea urchin eggs requires the presence of inositol trisphosphate. Biochem Biophys Res Commun. 1987 Jul 15;146(1):284–290. doi: 10.1016/0006-291x(87)90723-6. [DOI] [PubMed] [Google Scholar]
  9. Irvine R. F., Moor R. M. Micro-injection of inositol 1,3,4,5-tetrakisphosphate activates sea urchin eggs by a mechanism dependent on external Ca2+. Biochem J. 1986 Dec 15;240(3):917–920. doi: 10.1042/bj2400917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martin T. F., Lucas D. O., Bajjalieh S. M., Kowalchyk J. A. Thyrotropin-releasing hormone activates a Ca2+-dependent polyphosphoinositide phosphodiesterase in permeable GH3 cells. GTP gamma S potentiation by a cholera and pertussis toxin-insensitive mechanism. J Biol Chem. 1986 Feb 25;261(6):2918–2927. [PubMed] [Google Scholar]
  11. Merritt J. E., Taylor C. W., Rubin R. P., Putney J. W., Jr Evidence suggesting that a novel guanine nucleotide regulatory protein couples receptors to phospholipase C in exocrine pancreas. Biochem J. 1986 Jun 1;236(2):337–343. doi: 10.1042/bj2360337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miyazaki S., Hashimoto N., Yoshimoto Y., Kishimoto T., Igusa Y., Hiramoto Y. Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev Biol. 1986 Nov;118(1):259–267. doi: 10.1016/0012-1606(86)90093-x. [DOI] [PubMed] [Google Scholar]
  13. Miyazaki S., Igusa Y. Ca-mediated activation of a K current at fertilization of golden hamster eggs. Proc Natl Acad Sci U S A. 1982 Feb;79(3):931–935. doi: 10.1073/pnas.79.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Miyazaki S., Igusa Y. Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature. 1981 Apr 23;290(5808):702–704. doi: 10.1038/290702a0. [DOI] [PubMed] [Google Scholar]
  15. Oberdorf J. A., Head J. F., Kaminer B. Calcium uptake and release by isolated cortices and microsomes from the unfertilized egg of the sea urchin Strongylocentrotus droebachiensis. J Cell Biol. 1986 Jun;102(6):2205–2210. doi: 10.1083/jcb.102.6.2205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Oinuma M., Katada T., Yokosawa H., Ui M. Guanine nucleotide-binding protein in sea urchin eggs serving as the specific substrate of islet-activating protein, pertussis toxin. FEBS Lett. 1986 Oct 20;207(1):28–34. doi: 10.1016/0014-5793(86)80007-2. [DOI] [PubMed] [Google Scholar]
  17. Strong J. A., Fox A. P., Tsien R. W., Kaczmarek L. K. Stimulation of protein kinase C recruits covert calcium channels in Aplysia bag cell neurons. Nature. 1987 Feb 19;325(6106):714–717. doi: 10.1038/325714a0. [DOI] [PubMed] [Google Scholar]
  18. Swann K., Whitaker M. The part played by inositol trisphosphate and calcium in the propagation of the fertilization wave in sea urchin eggs. J Cell Biol. 1986 Dec;103(6 Pt 1):2333–2342. doi: 10.1083/jcb.103.6.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Turner P. R., Jaffe L. A., Fein A. Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J Cell Biol. 1986 Jan;102(1):70–76. doi: 10.1083/jcb.102.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Turner P. R., Jaffe L. A., Primakoff P. A cholera toxin-sensitive G-protein stimulates exocytosis in sea urchin eggs. Dev Biol. 1987 Apr;120(2):577–583. doi: 10.1016/0012-1606(87)90260-0. [DOI] [PubMed] [Google Scholar]
  21. Turner P. R., Sheetz M. P., Jaffe L. A. Fertilization increases the polyphosphoinositide content of sea urchin eggs. Nature. 1984 Aug 2;310(5976):414–415. doi: 10.1038/310414a0. [DOI] [PubMed] [Google Scholar]
  22. Wallace M. A., Fain J. N. Guanosine 5'-O-thiotriphosphate stimulates phospholipase C activity in plasma membranes of rat hepatocytes. J Biol Chem. 1985 Aug 15;260(17):9527–9530. [PubMed] [Google Scholar]
  23. Yanagimachi R. Sperm-egg association in animals. Curr Top Dev Biol. 1978;12:83–105. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES