Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Feb 1;106(2):279–288. doi: 10.1083/jcb.106.2.279

Intracellular colocalization of variant surface glycoprotein and transferrin-gold in Trypanosoma brucei

PMCID: PMC2114974  PMID: 2448312

Abstract

Endocytosis and intracellular transport has been studied in the bloodstream forms of Trypanosoma brucei by light and electron microscopy, using colloidal gold coupled to bovine transferrin (transferrin-gold). The endocytosed transferrin-gold, visualized by silver intensification for light microscopy, was present in vesicular structures between the cell nucleus and flagellar pocket of the organism. At the ultrastructural level, transferrin-gold was present after a 10-min incubation in the flagellar pocket, coated vesicles, cisternal networks, and lysosomelike structures. Endocytosis and intracellular processing of T. brucei variable surface glycoprotein (VSG) was studied using two preparations of affinity-purified rabbit IgG directed against different parts of the VSG. One preparation of IgG was directed against the cross-reacting determinant (CRD): a complex glycolipid side chain covalently linked to the COOH-terminus of the VSG molecule. The other was directed against determinants on the rest of the VSG molecule. When the two IgG preparations were used on thawed, thin cryosections of trypanosomes that had been incubated in transferrin-gold before fixation, the organelles involved with transferrin-gold endocytosis labeled with both antibodies, as well as many vesicular, tubular, and vacuolar structures that did not contain endocytosed transferrin-gold. Both antibodies also labeled the cell surface. In double-labeling experiments both antibodies were closely associated except that IgG directed against the VSG molecule labeled all the cisternae of the Golgi apparatus, whereas anti-CRD IgG was shown to label only half of the Golgi apparatus. Evidence for sorting of VSG molecules from endocytosed transferrin-gold was found. Double- labeling experiments also showed some tubular profiles which labeled on one side with anti-CRD IgG and on the other side with anti-VSG IgG, suggesting a possible segregation of parts of the VSG molecule.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bangs J. D., Hereld D., Krakow J. L., Hart G. W., Englund P. T. Rapid processing of the carboxyl terminus of a trypanosome variant surface glycoprotein. Proc Natl Acad Sci U S A. 1985 May;82(10):3207–3211. doi: 10.1073/pnas.82.10.3207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Barbet A. F., McGuire T. C. Crossreacting determinants in variant-specific surface antigens of African trypanosomes. Proc Natl Acad Sci U S A. 1978 Apr;75(4):1989–1993. doi: 10.1073/pnas.75.4.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barry J. D., Vickerman K. Trypanosoma brucei: loss of variable antigens during transformation from bloodstream to procyclic forms in vitro. Exp Parasitol. 1979 Oct;48(2):313–324. doi: 10.1016/0014-4894(79)90114-0. [DOI] [PubMed] [Google Scholar]
  4. Brown K. N., Armstrong J. A., Valentine R. C. The ingestion of protein molecules by blood forms of Trypanosoma rhodesiense. Exp Cell Res. 1965 Aug;39(1):129–135. doi: 10.1016/0014-4827(65)90015-7. [DOI] [PubMed] [Google Scholar]
  5. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  6. Bülow R., Overath P. Synthesis of a hydrolase for the membrane-form variant surface glycoprotein is repressed during transformation of Trypanosoma brucei. FEBS Lett. 1985 Jul 22;187(1):105–110. doi: 10.1016/0014-5793(85)81223-0. [DOI] [PubMed] [Google Scholar]
  7. Cardoso de Almeida M. L., Allan L. M., Turner M. J. Purification and properties of the membrane form of variant surface glycoproteins (VSGs) from Trypanosoma brucei. J Protozool. 1984 Feb;31(1):53–60. doi: 10.1111/j.1550-7408.1984.tb04289.x. [DOI] [PubMed] [Google Scholar]
  8. Cardoso de Almeida M. L., Turner M. J. The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature. 1983 Mar 24;302(5906):349–352. doi: 10.1038/302349a0. [DOI] [PubMed] [Google Scholar]
  9. Cross G. A. Identification, purification and properties of clone-specific glycoprotein antigens constituting the surface coat of Trypanosoma brucei. Parasitology. 1975 Dec;71(3):393–417. doi: 10.1017/s003118200004717x. [DOI] [PubMed] [Google Scholar]
  10. Cross G. A. Structure of the variant glycoproteins and surface coat of Trypanosoma brucei. Philos Trans R Soc Lond B Biol Sci. 1984 Nov 13;307(1131):3–12. doi: 10.1098/rstb.1984.0104. [DOI] [PubMed] [Google Scholar]
  11. Ferguson M. A., Cross G. A. Myristylation of the membrane form of a Trypanosoma brucei variant surface glycoprotein. J Biol Chem. 1984 Mar 10;259(5):3011–3015. [PubMed] [Google Scholar]
  12. Ferguson M. A., Haldar K., Cross G. A. Trypanosoma brucei variant surface glycoprotein has a sn-1,2-dimyristyl glycerol membrane anchor at its COOH terminus. J Biol Chem. 1985 Apr 25;260(8):4963–4968. [PubMed] [Google Scholar]
  13. Geuze H. J., Slot J. W., van der Ley P. A., Scheffer R. C. Use of colloidal gold particles in double-labeling immunoelectron microscopy of ultrathin frozen tissue sections. J Cell Biol. 1981 Jun;89(3):653–665. doi: 10.1083/jcb.89.3.653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grab D. J., Bwayo J. J. Isopycnic isolation of African trypanosomes on Percoll gradients formed in situ. Acta Trop. 1982 Dec;39(4):363–366. [PubMed] [Google Scholar]
  15. Grab D. J., Webster P., Ito S., Fish W. R., Verjee Y., Lonsdale-Eccles J. D. Subcellular localization of a variable surface glycoprotein phosphatidylinositol-specific phospholipase-C in African trypanosomes. J Cell Biol. 1987 Aug;105(2):737–746. doi: 10.1083/jcb.105.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grab D. J., Webster P., Verjee Y. The intracellular pathway and assembly of newly formed variable surface glycoprotein of Trypanosoma brucei. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7703–7707. doi: 10.1073/pnas.81.24.7703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Griffiths G., McDowall A., Back R., Dubochet J. On the preparation of cryosections for immunocytochemistry. J Ultrastruct Res. 1984 Oct;89(1):65–78. doi: 10.1016/s0022-5320(84)80024-6. [DOI] [PubMed] [Google Scholar]
  18. Griffiths G., Simons K., Warren G., Tokuyasu K. T. Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki Forest virus spike glycoproteins. Methods Enzymol. 1983;96:466–485. doi: 10.1016/s0076-6879(83)96041-x. [DOI] [PubMed] [Google Scholar]
  19. Gurnett A. M., Raper J., Turner M. J. Solution properties of the variant surface glycoprotein of Trypanosoma brucei. Mol Biochem Parasitol. 1986 Feb;18(2):141–153. doi: 10.1016/0166-6851(86)90034-4. [DOI] [PubMed] [Google Scholar]
  20. Gurnett A. M., Ward J., Raper J., Turner M. J. Purification and characterisation of membrane-form variant surface glycoproteins of Trypanosoma brucei. Mol Biochem Parasitol. 1986 Jul;20(1):1–13. doi: 10.1016/0166-6851(86)90137-4. [DOI] [PubMed] [Google Scholar]
  21. Holder A. A., Cross G. A. Glycopeptides from variant surface glycoproteins of Trypanosoma Brucei. C-terminal location of antigenically cross-reacting carbohydrate moieties. Mol Biochem Parasitol. 1981 Feb;2(3-4):135–150. doi: 10.1016/0166-6851(81)90095-5. [DOI] [PubMed] [Google Scholar]
  22. Horisberger M., Clerc M. F. Labelling of colloidal gold with protein A. A quantitative study. Histochemistry. 1985;82(3):219–223. doi: 10.1007/BF00501398. [DOI] [PubMed] [Google Scholar]
  23. Jackson D. G., Voorheis H. P. Release of the variable surface coat glycoprotein from Trypanosoma brucei requires the cleavage of a phosphate ester. J Biol Chem. 1985 Apr 25;260(8):5179–5183. [PubMed] [Google Scholar]
  24. Klausner R. D., Ashwell G., van Renswoude J., Harford J. B., Bridges K. R. Binding of apotransferrin to K562 cells: explanation of the transferrin cycle. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2263–2266. doi: 10.1073/pnas.80.8.2263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Langreth S. G., Balber A. E. Protein uptake and digestion in bloodstream and culture forms of Trypanosoma brucei. J Protozool. 1975 Feb;22(1):40–53. doi: 10.1111/j.1550-7408.1975.tb00943.x. [DOI] [PubMed] [Google Scholar]
  26. Neutra M. R., Ciechanover A., Owen L. S., Lodish H. F. Intracellular transport of transferrin- and asialoorosomucoid-colloidal gold conjugates to lysosomes after receptor-mediated endocytosis. J Histochem Cytochem. 1985 Nov;33(11):1134–1144. doi: 10.1177/33.11.2997327. [DOI] [PubMed] [Google Scholar]
  27. Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
  28. Slot J. W., Geuze H. J. Sizing of protein A-colloidal gold probes for immunoelectron microscopy. J Cell Biol. 1981 Aug;90(2):533–536. doi: 10.1083/jcb.90.2.533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Turner M. J. Antigenic variation in its biological context. Philos Trans R Soc Lond B Biol Sci. 1984 Nov 13;307(1131):27–40. doi: 10.1098/rstb.1984.0106. [DOI] [PubMed] [Google Scholar]
  30. Willingham M. C., Hanover J. A., Dickson R. B., Pastan I. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc Natl Acad Sci U S A. 1984 Jan;81(1):175–179. doi: 10.1073/pnas.81.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES