Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Feb 1;106(2):505–517. doi: 10.1083/jcb.106.2.505

Astrotactin: a novel neuronal cell surface antigen that mediates neuron- astroglial interactions in cerebellar microcultures

PMCID: PMC2114977  PMID: 3276720

Abstract

A microculture system for mouse cerebellar cells has been used to identify an immune activity, raised in rabbits against postnatal cerebellar cells, that blocks neuron-glial interactions in vitro. In the presence of blocking antibodies, stable neuron-glial contacts did not form and neuronal induction of glial process outgrowth did not occur. Subsequently, neurons were randomly arranged in the cultures rather than organized along the arms of astroglia. We have named the immune activity that blocks neuron-astroglial interactions anti- astrotactin. Partial purification of the anti-astrotactin blocking antibodies was obtained by cellular absorption with PC12 cells, a clonal cell line which expresses both the N-CAM and NILE (Ng-CAM, L1) glycoproteins. Subsequent absorption with purified cerebellar granule cells, but not with astroglial cells, removed the blocking activity, suggesting that the antigen(s) bound by blocking antibodies are neuronal. Immunoprecipitation of [35S]methionine- or [3H]fucose- radiolabeled Triton extracts of early postnatal cerebellar cells showed that the unabsorbed antiserum recognized a large number of proteins. Among these were bands with apparent molecular masses of N-CAM (180 and 140 kD) and NILE (230 kD). After absorption of the immune serum with PC12 cells, the number of bands recognized by the antiserum was reduced to a prominent band at 100 kD and a diffuse smear of material between 80 and 90 kD. The prominent band at 100 kD was removed by subsequent absorption of the immune serum with granule cells, a step which removed the blocking activity in the cerebellar microculture assay. Further evidence suggests that the astrotactin activity is missing or defective on granule cells from the neurological mutant mouse weaver, an animal that suffers a failure of glial-guided neuronal migration. When anti- astrotactin Fab fragments were pre-absorbed with weaver cerebellar neurons and then tested in the functional assay of neuron-glial interactions, the immune blocking activity was not removed. In contrast, wild-type cerebellar neurons removed the anti-astrotactin blocking activity under the same conditions. Subsequently, when [3H]fucose-radiolabeled Triton extracts of weaver and normal cells were immunoprecipitated with whole or PC12-absorbed anti-astrotactin antiserum, the intensity of the band at 100 kD was reduced by 95% in weaver cells.

Full Text

The Full Text of this article is available as a PDF (4.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. D., Allen N. S., Travis J. L. Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: a new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris. Cell Motil. 1981;1(3):291–302. doi: 10.1002/cm.970010303. [DOI] [PubMed] [Google Scholar]
  2. Bignami A., Dahl D. The development of Bergmann glia in mutant mice with cerebellar malformations: reeler, staggerer and weaver. Immunofluorescence study with antibodies to the glial fibrillary acidic protein. J Comp Neurol. 1974 May 15;155(2):219–229. doi: 10.1002/cne.901550207. [DOI] [PubMed] [Google Scholar]
  3. Brackenbury R., Thiery J. P., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell-cell binding. J Biol Chem. 1977 Oct 10;252(19):6835–6840. [PubMed] [Google Scholar]
  4. Edelman G. M., Chuong C. M. Embryonic to adult conversion of neural cell adhesion molecules in normal and staggerer mice. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7036–7040. doi: 10.1073/pnas.79.22.7036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Edmondson J. C., Hatten M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J Neurosci. 1987 Jun;7(6):1928–1934. doi: 10.1523/JNEUROSCI.07-06-01928.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Faissner A., Kruse J., Nieke J., Schachner M. Expression of neural cell adhesion molecule L1 during development, in neurological mutants and in the peripheral nervous system. Brain Res. 1984 Jul;317(1):69–82. doi: 10.1016/0165-3806(84)90141-x. [DOI] [PubMed] [Google Scholar]
  7. Friedlander D. R., Grumet M., Edelman G. M. Nerve growth factor enhances expression of neuron-glia cell adhesion molecule in PC12 cells. J Cell Biol. 1986 Feb;102(2):413–419. doi: 10.1083/jcb.102.2.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldowitz D., Mullen R. J. Granule cell as a site of gene action in the weaver mouse cerebellum: evidence from heterozygous mutant chimeras. J Neurosci. 1982 Oct;2(10):1474–1485. doi: 10.1523/JNEUROSCI.02-10-01474.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grumet M., Hoffman S., Chuong C. M., Edelman G. M. Polypeptide components and binding functions of neuron-glia cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7989–7993. doi: 10.1073/pnas.81.24.7989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grumet M., Hoffman S., Edelman G. M. Two antigenically related neuronal cell adhesion molecules of different specificities mediate neuron-neuron and neuron-glia adhesion. Proc Natl Acad Sci U S A. 1984 Jan;81(1):267–271. doi: 10.1073/pnas.81.1.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatten M. E., Liem R. K. Astroglial cells provide a template for the positioning of developing cerebellar neurons in vitro. J Cell Biol. 1981 Sep;90(3):622–630. doi: 10.1083/jcb.90.3.622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hatten M. E., Liem R. K., Mason C. A. Defects in specific associations between astroglia and neurons occur in microcultures of weaver mouse cerebellar cells. J Neurosci. 1984 Apr;4(4):1163–1172. doi: 10.1523/JNEUROSCI.04-04-01163.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hatten M. E., Liem R. K., Mason C. A. Two forms of cerebellar glial cells interact differently with neurons in vitro. J Cell Biol. 1984 Jan;98(1):193–204. doi: 10.1083/jcb.98.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hatten M. E., Liem R. K., Mason C. A. Weaver mouse cerebellar granule neurons fail to migrate on wild-type astroglial processes in vitro. J Neurosci. 1986 Sep;6(9):2676–2683. doi: 10.1523/JNEUROSCI.06-09-02676.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hatten M. E. Neuronal inhibition of astroglial cell proliferation is membrane mediated. J Cell Biol. 1987 May;104(5):1353–1360. doi: 10.1083/jcb.104.5.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hatten M. E. Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol. 1985 Feb;100(2):384–396. doi: 10.1083/jcb.100.2.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hirano A., Dembitzer H. M. Cerebellar alterations in the weaver mouse. J Cell Biol. 1973 Feb;56(2):478–486. doi: 10.1083/jcb.56.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hirn M., Pierres M., Deagostini-Bazin H., Hirsch M., Goridis C. Monoclonal antibody against cell surface glycoprotein of neurons. Brain Res. 1981 Jun 15;214(2):433–439. doi: 10.1016/0006-8993(81)91208-7. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. McGuire J. C., Greene L. A., Furano A. V. NGF stimulates incorporation of fucose or glucosamine into an external glycoprotein in cultured rat PC12 pheochromocytoma cells. Cell. 1978 Oct;15(2):357–365. doi: 10.1016/0092-8674(78)90004-1. [DOI] [PubMed] [Google Scholar]
  21. Noble M., Albrechtsen M., Møller C., Lyles J., Bock E., Goridis C., Watanabe M., Rutishauser U. Glial cells express N-CAM/D2-CAM-like polypeptides in vitro. Nature. 1985 Aug 22;316(6030):725–728. doi: 10.1038/316725a0. [DOI] [PubMed] [Google Scholar]
  22. Rakic P. Neuron-glia relationship during granule cell migration in developing cerebellar cortex. A Golgi and electronmicroscopic study in Macacus Rhesus. J Comp Neurol. 1971 Mar;141(3):283–312. doi: 10.1002/cne.901410303. [DOI] [PubMed] [Google Scholar]
  23. Rakic P., Sidman R. L. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol. 1973 Nov 15;152(2):133–161. doi: 10.1002/cne.901520203. [DOI] [PubMed] [Google Scholar]
  24. Rakic P., Sidman R. L. Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice. J Comp Neurol. 1973 Nov 15;152(2):103–132. doi: 10.1002/cne.901520202. [DOI] [PubMed] [Google Scholar]
  25. Rakic P., Sidman R. L. Weaver mutant mouse cerebellum: defective neuronal migration secondary to abnormality of Bergmann glia. Proc Natl Acad Sci U S A. 1973 Jan;70(1):240–244. doi: 10.1073/pnas.70.1.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rathjen F. G., Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984 Jan;3(1):1–10. doi: 10.1002/j.1460-2075.1984.tb01753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rezai Z., Yoon C. H. Abnormal rate of granule cell migration in the cerebellum of "Weaver" mutant mice. Dev Biol. 1972 Sep;29(1):17–26. doi: 10.1016/0012-1606(72)90039-5. [DOI] [PubMed] [Google Scholar]
  28. Richter-Landsberg C., Greene L. A., Shelanski M. L. Cell surface Thy-1-cross-reactive glycoprotein in cultured PC12 cells: modulation by nerve growth factor and association with the cytoskeleton. J Neurosci. 1985 Feb;5(2):468–476. doi: 10.1523/JNEUROSCI.05-02-00468.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rutishauser U. Molecular and biological properties of a neural cell adhesion molecule. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):501–514. doi: 10.1101/sqb.1983.048.01.055. [DOI] [PubMed] [Google Scholar]
  30. Sajovic P., Kouvelas E., Trenkner E. Probable identity of NILE glycoprotein and the high-molecular-weight component of L1 antigen. J Neurochem. 1986 Aug;47(2):541–546. doi: 10.1111/j.1471-4159.1986.tb04533.x. [DOI] [PubMed] [Google Scholar]
  31. Salton S. R., Richter-Landsberg C., Greene L. A., Shelanski M. L. Nerve growth factor-inducible large external (NILE) glycoprotein: studies of a central and peripheral neuronal marker. J Neurosci. 1983 Mar;3(3):441–454. doi: 10.1523/JNEUROSCI.03-03-00441.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Salton S. R., Shelanski M. L., Greene L. A. Biochemical properties of the nerve growth factor-inducible large external (NILE) glycoprotein. J Neurosci. 1983 Dec;3(12):2420–2430. doi: 10.1523/JNEUROSCI.03-12-02420.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sotelo C. Anatomical, physiological and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse. Brain Res. 1975 Aug 22;94(1):19–44. doi: 10.1016/0006-8993(75)90874-4. [DOI] [PubMed] [Google Scholar]
  34. Thanos S., Bonhoeffer F., Rutishauser U. Fiber-fiber interaction and tectal cues influence the development of the chicken retinotectal projection. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1906–1910. doi: 10.1073/pnas.81.6.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Thiery J. P., Brackenbury R., Rutishauser U., Edelman G. M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J Biol Chem. 1977 Oct 10;252(19):6841–6845. [PubMed] [Google Scholar]
  36. Trenkner E., Sidman R. L. Histogenesis of mouse cerebellum in microwell cultures. Cell reaggregation and migration, fiber and synapse formation. J Cell Biol. 1977 Dec;75(3):915–940. doi: 10.1083/jcb.75.3.915. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES