Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1988 Oct;170(10):4608–4612. doi: 10.1128/jb.170.10.4608-4612.1988

Analysis and characterization of the folates in the nonmethanogenic archaebacteria.

R H White 1
PMCID: PMC211499  PMID: 3139633

Abstract

A detailed analysis of the folate coenzymes in the nonmethanogenic archaebacteria has been performed. By using the Lactobacillus casei microbiological assay for folates, the levels of folates in Sulfolobus solfataricus and Sulfolobus acidocaldarius were found to be 3.7 and 8.3 ng/g (dry weight) of cells, respectively, compared with 88,000 and 28,000 ng/g (dry weight) of cells in Halobacterium halobium and Halobacterium strain GN-1, respectively. The levels of folates found in the Sulfolobus spp. were approximately 100 times less than those found in the typical eubacterium, whereas the levels in the halobacteria were approximately 10 times higher. The folate in Sulfolobus solfataricus was shown to consist of only 5-formyltetrahydropteroylglutamate, and the folate in Halobacterium strain GN-1 was shown to consist of only pteroyldiglutamate. The low folate levels in the Sulfolobus spp. are the same as those found in the methanogenic bacteria, suggesting that another C1 carrier may function in these cells.

Full text

PDF
4608

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol. 1972;84(1):54–68. doi: 10.1007/BF00408082. [DOI] [PubMed] [Google Scholar]
  2. Brown J. P., Dobbs F., Davidson G. E., Scott J. M. Microbial synthesis of folate polyglutamates from labelled precursors. J Gen Microbiol. 1974 Sep;84(1):163–172. doi: 10.1099/00221287-84-1-163. [DOI] [PubMed] [Google Scholar]
  3. Donnelly M. I., Escalante-Semerena J. C., Rinehart K. L., Jr, Wolfe R. S. Methenyl-tetrahydromethanopterin cyclohydrolase in cell extracts of Methanobacterium. Arch Biochem Biophys. 1985 Nov 1;242(2):430–439. doi: 10.1016/0003-9861(85)90227-9. [DOI] [PubMed] [Google Scholar]
  4. Donnelly M. I., Wolfe R. S. The role of formylmethanofuran: tetrahydromethanopterin formyltransferase in methanogenesis from carbon dioxide. J Biol Chem. 1986 Dec 15;261(35):16653–16659. [PubMed] [Google Scholar]
  5. Escalante-Semerena J. C., Leigh J. A., Rinehart K. L., Wolfe R. S. Formaldehyde activation factor, tetrahydromethanopterin, a coenzyme of methanogenesis. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1976–1980. doi: 10.1073/pnas.81.7.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Escalante-Semerena J. C., Rinehart K. L., Jr, Wolfe R. S. Tetrahydromethanopterin, a carbon carrier in methanogenesis. J Biol Chem. 1984 Aug 10;259(15):9447–9455. [PubMed] [Google Scholar]
  7. Escalante-Semerena J. C., Wolfe R. S. Tetrahydromethanopterin-dependent methanogenesis from non-physiological C1 donors in Methanobacterium thermoautotrophicum. J Bacteriol. 1985 Feb;161(2):696–701. doi: 10.1128/jb.161.2.696-701.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Foo S. K., Cichowicz D. J., Shane B. Cleavage of naturally occurring folates to unsubstituted p-aminobenzoylpoly-gamma-glutamates. Anal Biochem. 1980 Sep 1;107(1):109–115. doi: 10.1016/0003-2697(80)90499-6. [DOI] [PubMed] [Google Scholar]
  9. Furness R. A., Loewen P. C. Detection of p-aminobenzoylpoly(gamma-glutamates) using fluorescamine. Anal Biochem. 1981 Oct;117(1):126–135. doi: 10.1016/0003-2697(81)90702-8. [DOI] [PubMed] [Google Scholar]
  10. HEACOCK R. A., MAHON M. E. THE COLOUR REACTIONS OF THE HYDROXYSKATOLES. J Chromatogr. 1965 Feb;17:338–348. doi: 10.1016/s0021-9673(00)99878-9. [DOI] [PubMed] [Google Scholar]
  11. Javor B. J. Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol. 1984 Aug;48(2):352–360. doi: 10.1128/aem.48.2.352-360.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leigh J. A. Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria. Appl Environ Microbiol. 1983 Mar;45(3):800–803. doi: 10.1128/aem.45.3.800-803.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Leigh J. A., Wolfe R. S. Carbon dioxide reduction factor and methanopterin, two coenzymes required for CO2 reduction to methane by extracts of Methanobacterium. J Biol Chem. 1983 Jun 25;258(12):7536–7540. [PubMed] [Google Scholar]
  14. Parker D. J., Wu T. F., Wood H. G. Total synthesis of acetate from CO 2 : methyltetrahydrofolate, an intermediate, and a procedure for separation of the folates. J Bacteriol. 1971 Nov;108(2):770–776. doi: 10.1128/jb.108.2.770-776.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. White R. H. Biosynthesis of the 7-methylated pterin of methanopterin. J Bacteriol. 1986 Jan;165(1):215–218. doi: 10.1128/jb.165.1.215-218.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. van Beelen P., Labro J. F., Keltjens J. T., Geerts W. J., Vogels G. D., Laarhoven W. H., Guijt W., Haasnoot C. A. Derivatives of methanopterin, a coenzyme involved in methanogenesis. Eur J Biochem. 1984 Mar 1;139(2):359–365. doi: 10.1111/j.1432-1033.1984.tb08014.x. [DOI] [PubMed] [Google Scholar]
  17. van Beelen P., Stassen A. P., Bosch J. W., Vogels G. D., Guijt W., Haasnoot C. A. Elucidation of the structure of methanopterin, a coenzyme from Methanobacterium thermoautotrophicum, using two-dimensional nuclear-magnetic-resonance techniques. Eur J Biochem. 1984 Feb 1;138(3):563–571. doi: 10.1111/j.1432-1033.1984.tb07951.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES