Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Apr 1;106(4):1321–1329. doi: 10.1083/jcb.106.4.1321

A monoclonal antibody against a laminin-heparan sulfate proteoglycan complex perturbs cranial neural crest migration in vivo

PMCID: PMC2114992  PMID: 2966180

Abstract

INO (inhibitor of neurite outgrowth) is a monoclonal antibody that blocks axon outgrowth, presumably by functionally blocking a laminin- heparan sulfate proteoglycan complex (Chiu, A. Y., W. D. Matthew, and P. H. Patterson. 1986. J. Cell Biol. 103: 1382-1398). Here the effect of this antibody on avian neural crest cells was examined by microinjecting INO onto the pathways of cranial neural crest migration. After injection lateral to the mesencephalic neural tube, the antibody had a primarily unilateral distribution. INO binding was observed in the basal laminae surrounding the neural tube, ectoderm, and endoderm, as well as within the cranial mesenchyme on the injected side of the embryo. This staining pattern was indistinguishable from those observed with antibodies against laminin or heparan sulfate proteoglycan. The injected antibody remained detectable for 18 h after injection, with the intensity of immuno-reactivity decreasing with time. Embryos ranging from the neural fold stage to the 9-somite stage were injected with INO and subsequently allowed to survive for up to 1 d after injection. These embryos demonstrated severe abnormalities in cranial neural crest migration. The predominant defects were ectopic neural crest cells external to the neural tube, neural crest cells within the lumen of the neural tube, and neural tube deformities. In contrast, embryos injected with antibodies against laminin or heparan sulfate proteoglycan were unaffected. When embryos with ten or more somites were injected with INO, no effects were noted, suggesting that embryos are sensitive for only a limited time during their development. Immunoprecipitation of the INO antigen from 2-d chicken embryos revealed a 200-kD band characteristic of laminin and two broad smears between 180 and 85 kD, which were resolved into several bands at lower molecular mass after heparinase digestion. These results indicate that INO precipitates both laminin and proteoglycans bearing heparan sulfate residues. Thus, microinjection of INO causes functional blockage of a laminin-heparan sulfate proteoglycan complex, resulting in abnormal cranial neural crest migration. This is the first evidence that a laminin-heparan sulfate proteoglycan complex is involved in aspects of neural crest migration in vivo.

Full Text

The Full Text of this article is available as a PDF (2.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler R., Manthorpe M., Skaper S. D., Varon S. Polyornithine-attached neurite-promoting factors (PNPFs). Culture sources and responsive neurons. Brain Res. 1981 Feb 9;206(1):129–144. doi: 10.1016/0006-8993(81)90105-0. [DOI] [PubMed] [Google Scholar]
  2. Bayne E. K., Anderson M. J., Fambrough D. M. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J Cell Biol. 1984 Oct;99(4 Pt 1):1486–1501. doi: 10.1083/jcb.99.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boucaut J. C., Darribère T., Poole T. J., Aoyama H., Yamada K. M., Thiery J. P. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol. 1984 Nov;99(5):1822–1830. doi: 10.1083/jcb.99.5.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bozyczko D., Horwitz A. F. The participation of a putative cell surface receptor for laminin and fibronectin in peripheral neurite extension. J Neurosci. 1986 May;6(5):1241–1251. doi: 10.1523/JNEUROSCI.06-05-01241.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bronner-Fraser M. Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J Cell Biol. 1985 Aug;101(2):610–617. doi: 10.1083/jcb.101.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bronner-Fraser M. An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol. 1986 Oct;117(2):528–536. doi: 10.1016/0012-1606(86)90320-9. [DOI] [PubMed] [Google Scholar]
  7. Bronner-Fraser M. Analysis of the early stages of trunk neural crest migration in avian embryos using monoclonal antibody HNK-1. Dev Biol. 1986 May;115(1):44–55. doi: 10.1016/0012-1606(86)90226-5. [DOI] [PubMed] [Google Scholar]
  8. Bronner-Fraser M. Latex beads as probes of a neural crest pathway: effects of laminin, collagen, and surface charge on bead translocation. J Cell Biol. 1984 Jun;98(6):1947–1960. doi: 10.1083/jcb.98.6.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bronner-Fraser M. Perturbation of cranial neural crest migration by the HNK-1 antibody. Dev Biol. 1987 Oct;123(2):321–331. doi: 10.1016/0012-1606(87)90390-3. [DOI] [PubMed] [Google Scholar]
  10. Chiu A. Y., Matthew W. D., Patterson P. H. A monoclonal antibody that blocks the activity of a neurite regeneration-promoting factor: studies on the binding site and its localization in vivo. J Cell Biol. 1986 Oct;103(4):1383–1398. doi: 10.1083/jcb.103.4.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chiu A. Y., Matthew W. D., Patterson P. H. A monoclonal antibody that blocks the activity of a neurite regeneration-promoting factor: studies on the binding site and its localization in vivo. J Cell Biol. 1986 Oct;103(4):1383–1398. doi: 10.1083/jcb.103.4.1383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Horwitz A., Duggan K., Greggs R., Decker C., Buck C. The cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol. 1985 Dec;101(6):2134–2144. doi: 10.1083/jcb.101.6.2134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Keynes R. J., Stern C. D. Segmentation in the vertebrate nervous system. 1984 Aug 30-Sep 5Nature. 310(5980):786–789. doi: 10.1038/310786a0. [DOI] [PubMed] [Google Scholar]
  14. Krotoski D. M., Domingo C., Bronner-Fraser M. Distribution of a putative cell surface receptor for fibronectin and laminin in the avian embryo. J Cell Biol. 1986 Sep;103(3):1061–1071. doi: 10.1083/jcb.103.3.1061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kruse J., Mailhammer R., Wernecke H., Faissner A., Sommer I., Goridis C., Schachner M. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature. 1984 Sep 13;311(5982):153–155. doi: 10.1038/311153a0. [DOI] [PubMed] [Google Scholar]
  16. Lander A. D., Fujii D. K., Reichardt L. F. Laminin is associated with the "neurite outgrowth-promoting factors" found in conditioned media. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2183–2187. doi: 10.1073/pnas.82.7.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Lander A. D., Tomaselli K., Calof A. L., Reichardt L. F. Studies on extracellular matrix components that promote neurite outgrowth. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):611–623. doi: 10.1101/sqb.1983.048.01.065. [DOI] [PubMed] [Google Scholar]
  18. Lories V., De Boeck H., David G., Cassiman J. J., Van den Berghe H. Heparan sulfate proteoglycans of human lung fibroblasts. Structural heterogeneity of the core proteins of the hydrophobic cell-associated forms. J Biol Chem. 1987 Jan 15;262(2):854–859. [PubMed] [Google Scholar]
  19. Manthorpe M., Engvall E., Ruoslahti E., Longo F. M., Davis G. E., Varon S. Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol. 1983 Dec;97(6):1882–1890. doi: 10.1083/jcb.97.6.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matthew W. D., Patterson P. H. The production of a monoclonal antibody that blocks the action of a neurite outgrowth-promoting factor. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):625–631. doi: 10.1101/sqb.1983.048.01.066. [DOI] [PubMed] [Google Scholar]
  21. Matthew W. D., Reichardt L. F. Development and application of an efficient procedure for converting mouse IgM into small, active fragments. J Immunol Methods. 1982;50(3):239–253. doi: 10.1016/0022-1759(82)90162-4. [DOI] [PubMed] [Google Scholar]
  22. Newgreen D. Spreading of explants of embryonic chick mesenchymes and epithelia on fibronectin and laminin. Cell Tissue Res. 1984;236(2):265–277. doi: 10.1007/BF00214227. [DOI] [PubMed] [Google Scholar]
  23. Newgreen D., Thiery J. P. Fibronectin in early avian embryos: synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res. 1980;211(2):269–291. doi: 10.1007/BF00236449. [DOI] [PubMed] [Google Scholar]
  24. Poole T. J., Thiery J. P. Antibodies and a synthetic peptide that block cell-fibronectin adhesion arrest neural crest cell migration in vivo. Prog Clin Biol Res. 1986;217B:235–238. [PubMed] [Google Scholar]
  25. Rickmann M., Fawcett J. W., Keynes R. J. The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. J Embryol Exp Morphol. 1985 Dec;90:437–455. [PubMed] [Google Scholar]
  26. Rogers S. L., Edson K. J., Letourneau P. C., McLoon S. C. Distribution of laminin in the developing peripheral nervous system of the chick. Dev Biol. 1986 Feb;113(2):429–435. doi: 10.1016/0012-1606(86)90177-6. [DOI] [PubMed] [Google Scholar]
  27. Rovasio R. A., Delouvee A., Yamada K. M., Timpl R., Thiery J. P. Neural crest cell migration: requirements for exogenous fibronectin and high cell density. J Cell Biol. 1983 Feb;96(2):462–473. doi: 10.1083/jcb.96.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sandrock A. W., Jr, Matthew W. D. An in vitro neurite-promoting antigen functions in axonal regeneration in vivo. Science. 1987 Sep 25;237(4822):1605–1608. doi: 10.1126/science.3306923. [DOI] [PubMed] [Google Scholar]
  29. Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
  30. Tomaselli K. J., Reichardt L. F., Bixby J. L. Distinct molecular interactions mediate neuronal process outgrowth on non-neuronal cell surfaces and extracellular matrices. J Cell Biol. 1986 Dec;103(6 Pt 2):2659–2672. doi: 10.1083/jcb.103.6.2659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tucker G. C., Aoyama H., Lipinski M., Tursz T., Thiery J. P. Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ. 1984 Aug;14(3):223–230. doi: 10.1016/0045-6039(84)90049-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES