Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Apr 1;106(4):1017–1026. doi: 10.1083/jcb.106.4.1017

Micronuclei and the cytoplasm of growing Tetrahymena contain a histone acetylase activity which is highly specific for free histone H4

PMCID: PMC2114999  PMID: 3360847

Abstract

Salt extracts prepared from purified micronuclei and the cytoplasm of growing Tetrahymena contain a histone acetylase (also referred to as histone acetyltransferase) activity which is highly specific for H4 when tested as a free histone. With both extracts, H4 is acetylated first at position 4 (monoacetylated) or positions 4 and 11 (diacetylated), sites diagnostic of deposition-related acetylation of newly synthesized H4 in vivo. As the concentration of cytosolic extract is decreased in the in vitro reactions, acetylation of H3 is also observed. Neither activity acetylates histone in a chromatin form. These activities are distinct from a macronuclear acetylase which acetylates H3 and H4 (macro- or micronuclear) equally well as free histones and which acetylates all four core histones when mononucleosomes are used as substrate. As well, the micronuclear and cytoplasmic activities give similar thermal-inactivation profiles which are different from that of the macronuclear activity. In situ enzyme assays demonstrate a macronuclear-specific activity which acetylates endogenous macronuclear chromatin and an independent micronuclear- cytosolic activity which is able to act upon exogenously added free H4. These results argue strongly that an identical acetylase is responsible for the micronuclear and cytoplasmic activity which is either modified or altogether distinct from that in macronuclei.

Full Text

The Full Text of this article is available as a PDF (3.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allis C. D., Bowen J. K., Abraham G. N., Glover C. V., Gorovsky M. A. Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell. 1980 May;20(1):55–64. doi: 10.1016/0092-8674(80)90234-2. [DOI] [PubMed] [Google Scholar]
  2. Allis C. D., Chicoine L. G., Glover C. V., White E. M., Gorovsky M. A. Enzyme activity dot blots: a rapid and convenient assay for acetyltransferase or protein kinase activity immobilized on nitrocellulose. Anal Biochem. 1986 Nov 15;159(1):58–66. doi: 10.1016/0003-2697(86)90307-6. [DOI] [PubMed] [Google Scholar]
  3. Allis C. D., Chicoine L. G., Richman R., Schulman I. G. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8048–8052. doi: 10.1073/pnas.82.23.8048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allis C. D., Dennison D. K. Identification and purification of young macronuclear anlagen from conjugating cells of Tetrahymena thermophila. Dev Biol. 1982 Oct;93(2):519–533. doi: 10.1016/0012-1606(82)90139-7. [DOI] [PubMed] [Google Scholar]
  5. Allis C. D., Glover C. V., Bowen J. K., Gorovsky M. A. Histone variants specific to the transcriptionally active, amitotically dividing macronucleus of the unicellular eucaryote, Tetrahymena thermophila. Cell. 1980 Jul;20(3):609–617. doi: 10.1016/0092-8674(80)90307-4. [DOI] [PubMed] [Google Scholar]
  6. Allis C. D., Glover C. V., Gorovsky M. A. Micronuclei of Tetrahymena contain two types of histone H3. Proc Natl Acad Sci U S A. 1979 Oct;76(10):4857–4861. doi: 10.1073/pnas.76.10.4857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Allis C. D., Richman R., Gorovsky M. A., Ziegler Y. S., Touchstone B., Bradley W. A., Cook R. G. hv1 is an evolutionarily conserved H2A variant that is preferentially associated with active genes. J Biol Chem. 1986 Feb 5;261(4):1941–1948. [PubMed] [Google Scholar]
  8. Belikoff E., Wong L. J., Alberts B. M. Extensive purification of histone acetylase A, the major histone N-acetyl transferase activity detected in mammalian cell nuclei. J Biol Chem. 1980 Dec 10;255(23):11448–11453. [PubMed] [Google Scholar]
  9. Chambers S. A., Shaw B. R. Levels of histone H4 diacetylation decrease dramatically during sea urchin embryonic development and correlate with cell doubling rate. J Biol Chem. 1984 Nov 10;259(21):13458–13463. [PubMed] [Google Scholar]
  10. Chicoine L. G., Allis C. D. Regulation of histone acetylation during macronuclear differentiation in Tetrahymena: evidence for control at the level of acetylation and deacetylation. Dev Biol. 1986 Aug;116(2):477–485. doi: 10.1016/0012-1606(86)90148-x. [DOI] [PubMed] [Google Scholar]
  11. Chicoine L. G., Richman R., Cook R. G., Gorovsky M. A., Allis C. D. A single histone acetyltransferase from Tetrahymena macronuclei catalyzes deposition-related acetylation of free histones and transcription-related acetylation of nucleosomal histones. J Cell Biol. 1987 Jul;105(1):127–135. doi: 10.1083/jcb.105.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chicoine L. G., Schulman I. G., Richman R., Cook R. G., Allis C. D. Nonrandom utilization of acetylation sites in histones isolated from Tetrahymena. Evidence for functionally distinct H4 acetylation sites. J Biol Chem. 1986 Jan 25;261(3):1071–1076. [PubMed] [Google Scholar]
  13. Garcea R. L., Alberts B. M. Comparative studies of histone acetylation in nucleosomes, nuclei, and intact cells. Evidence for special factors which modify acetylase action. J Biol Chem. 1980 Dec 10;255(23):11454–11463. [PubMed] [Google Scholar]
  14. Giancotti V., Russo E., de Cristini F., Graziosi G., Micali F., Crane-Robinson C. Histone modification in early and late Drosophila embryos. Biochem J. 1984 Mar 1;218(2):321–329. doi: 10.1042/bj2180321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gorovsky M. A., Yao M. C., Keevert J. B., Pleger G. L. Isolation of micro- and macronuclei of Tetrahymena pyriformis. Methods Cell Biol. 1975;9(0):311–327. doi: 10.1016/s0091-679x(08)60080-1. [DOI] [PubMed] [Google Scholar]
  16. Karrer K. M. Germ line-specific DNA sequences are present on all five micronuclear chromosomes in Tetrahymena thermophila. Mol Cell Biol. 1983 Nov;3(11):1909–1919. doi: 10.1128/mcb.3.11.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schweizer D., Nagl W. Heterochromatin diversity in Cymbidium, and its relationship to differential DNA replication. Exp Cell Res. 1976 Mar 15;98(2):411–423. doi: 10.1016/0014-4827(76)90450-x. [DOI] [PubMed] [Google Scholar]
  18. Sures I., Gallwitz D. Histone-specific acetyltransferases from calf thymus. Isolation, properties, and substrate specificity of three different enzymes. Biochemistry. 1980 Mar 4;19(5):943–951. doi: 10.1021/bi00546a019. [DOI] [PubMed] [Google Scholar]
  19. Vavra K. J., Allis C. D., Gorovsky M. A. Regulation of histone acetylation in Tetrahymena macro- and micronuclei. J Biol Chem. 1982 Mar 10;257(5):2591–2598. [PubMed] [Google Scholar]
  20. Wiegand R. C., Brutlag D. L. Histone acetylase from Drosophila melanogaster specific for H4. J Biol Chem. 1981 May 10;256(9):4578–4583. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES