Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Apr 1;106(4):1307–1319. doi: 10.1083/jcb.106.4.1307

Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro

PMCID: PMC2115008  PMID: 2834404

Abstract

We studied the development of NCAM and gap junctional communication, and their mutual relationship in chick neuroectoderm in vitro. Expression of NCAM, as detected by monoclonal and polyclonal antibodies, and development of junctional communication, as detected by extensive cell-to-cell transfer of 400-500-D fluorescent tracers, occurred in cultures from stage-2 embryos onward. Both expressions presumably required primary induction. The differentiating cells formed discrete fields of expression on the second to third day in culture, with the NCAM fields coinciding with the junctional communication fields delineated by the tracers. Other neural differentiations developed in the following order: tetanus toxin receptors, neurofilament protein, and neurite outgrowth. Chronic treatment with antibody Fab fragments against NCAM interfered with the development of communication, suggesting that NCAM-mediated adhesion promotes formation of cell-to-cell channels. Temperature-sensitive mutant Rous sarcoma virus blocked (reversibly) communication and the subsequent development of neurofilament protein and neurites, but expression of NCAM continued.

Full Text

The Full Text of this article is available as a PDF (4.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Atkinson M. M., Menko A. S., Johnson R. G., Sheppard J. R., Sheridan J. D. Rapid and reversible reduction of junctional permeability in cells infected with a temperature-sensitive mutant of avian sarcoma virus. J Cell Biol. 1981 Nov;91(2 Pt 1):573–578. doi: 10.1083/jcb.91.2.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azarnia R., Loewenstein W. R. Intercellular communication and the control of growth: X. Alteration of junctional permeability by the src gene. A study with temperature-sensitive mutant Rous sarcoma virus. J Membr Biol. 1984;82(3):191–205. doi: 10.1007/BF01871629. [DOI] [PubMed] [Google Scholar]
  3. Azarnia R., Loewenstein W. R. Intercellular communication and the control of growth: XI. Alteration of junctional permeability by the src gene in a revertant cell with normal cytoskeleton. J Membr Biol. 1984;82(3):207–212. doi: 10.1007/BF01871630. [DOI] [PubMed] [Google Scholar]
  4. Azarnia R., Loewenstein W. R. Intercellular communication and the control of growth: XII. Alteration of junctional permeability by simian virus 40. Roles of the large and small T antigens. J Membr Biol. 1984;82(3):213–220. doi: 10.1007/BF01871631. [DOI] [PubMed] [Google Scholar]
  5. Azarnia R., Loewenstein W. R. Polyomavirus middle T antigen downregulates junctional cell-to-cell communication. Mol Cell Biol. 1987 Feb;7(2):946–950. doi: 10.1128/mcb.7.2.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Balak K., Jacobson M., Sunshine J., Rutishauser U. Neural cell adhesion molecule expression in Xenopus embryos. Dev Biol. 1987 Feb;119(2):540–550. doi: 10.1016/0012-1606(87)90057-1. [DOI] [PubMed] [Google Scholar]
  7. Crick F. Diffusion in embryogenesis. Nature. 1970 Jan 31;225(5231):420–422. doi: 10.1038/225420a0. [DOI] [PubMed] [Google Scholar]
  8. Edelman G. M. Cell adhesion molecules in neural histogenesis. Annu Rev Physiol. 1986;48:417–430. doi: 10.1146/annurev.ph.48.030186.002221. [DOI] [PubMed] [Google Scholar]
  9. Fallon R. F., Goodenough D. A. Five-hour half-life of mouse liver gap-junction protein. J Cell Biol. 1981 Aug;90(2):521–526. doi: 10.1083/jcb.90.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frelinger A. L., 3rd, Rutishauser U. Topography of N-CAM structural and functional determinants. II. Placement of monoclonal antibody epitopes. J Cell Biol. 1986 Nov;103(5):1729–1737. doi: 10.1083/jcb.103.5.1729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Furshpan E. J., Potter D. D. Low-resistance junctions between cells in embryos and tissue culture. Curr Top Dev Biol. 1968;3:95–127. doi: 10.1016/s0070-2153(08)60352-x. [DOI] [PubMed] [Google Scholar]
  12. Greenberg M. E., Brackenbury R., Edelman G. M. Alteration of neural cell adhesion molecule (N-CAM) expression after neuronal cell transformation by Rous sarcoma virus. Proc Natl Acad Sci U S A. 1984 Feb;81(3):969–973. doi: 10.1073/pnas.81.3.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Humphreys T. Cell surface components participating in aggregation: evidence for a new cell particulate. Exp Cell Res. 1965 Dec;40(3):539–543. doi: 10.1016/0014-4827(65)90232-6. [DOI] [PubMed] [Google Scholar]
  14. Hunter T., Cooper J. A. Protein-tyrosine kinases. Annu Rev Biochem. 1985;54:897–930. doi: 10.1146/annurev.bi.54.070185.004341. [DOI] [PubMed] [Google Scholar]
  15. Jacobson M., Rutishauser U. Induction of neural cell adhesion molecule (NCAM) in Xenopus embryos. Dev Biol. 1986 Aug;116(2):524–531. doi: 10.1016/0012-1606(86)90153-3. [DOI] [PubMed] [Google Scholar]
  16. Keane R. W., Lindblad P. C., Pierik L. T., Ingram V. M. Isolation and transformation of primary mesenchymal cells of the chick embryo. Cell. 1979 Aug;17(4):801–811. doi: 10.1016/0092-8674(79)90320-9. [DOI] [PubMed] [Google Scholar]
  17. Keane R. W., Lipsich L. A., Brugge J. S. Differentiation and transformation of neural plate cells. Dev Biol. 1984 May;103(1):38–52. doi: 10.1016/0012-1606(84)90005-8. [DOI] [PubMed] [Google Scholar]
  18. Kochav S., Ginsburg M., Eyal-Giladi H. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev Biol. 1980 Oct;79(2):296–308. doi: 10.1016/0012-1606(80)90117-7. [DOI] [PubMed] [Google Scholar]
  19. LOEWENSTEIN W. R., KANNO Y. STUDIES ON AN EPITHELIAL (GLAND) CELL JUNCTION. I. MODIFICATIONS OF SURFACE MEMBRANE PERMEABILITY. J Cell Biol. 1964 Sep;22:565–586. doi: 10.1083/jcb.22.3.565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lo C. W., Gilula N. B. Gap junctional communication in the preimplantation mouse embryo. Cell. 1979 Oct;18(2):399–409. doi: 10.1016/0092-8674(79)90059-x. [DOI] [PubMed] [Google Scholar]
  21. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  22. Loewenstein W. R. On the genesis of cellular communication. Dev Biol. 1967 Jun;15(6):503–520. doi: 10.1016/0012-1606(67)90050-4. [DOI] [PubMed] [Google Scholar]
  23. Loewenstein W. R. The cell-to-cell channel of gap junctions. Cell. 1987 Mar 13;48(5):725–726. doi: 10.1016/0092-8674(87)90067-5. [DOI] [PubMed] [Google Scholar]
  24. Moscona A. A. Cell aggregation: properties of specific cell-ligands and their role in the formation of multicellular systems. Dev Biol. 1968 Sep;18(3):250–277. doi: 10.1016/0012-1606(68)90035-3. [DOI] [PubMed] [Google Scholar]
  25. Ocklind C., Obrink B. Intercellular adhesion of rat hepatocytes. Identification of a cell surface glycoprotein involved in the initial adhesion process. J Biol Chem. 1982 Jun 25;257(12):6788–6795. [PubMed] [Google Scholar]
  26. Rose B., Yada T., Loewenstein W. R. Downregulation of cell-to-cell communication by the viral src gene is blocked by TMB-8 and recovery of communication is blocked by vanadate. J Membr Biol. 1986;94(2):129–142. doi: 10.1007/BF01871193. [DOI] [PubMed] [Google Scholar]
  27. Rutishauser U., Gall W. E., Edelman G. M. Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia. J Cell Biol. 1978 Nov;79(2 Pt 1):382–393. doi: 10.1083/jcb.79.2.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rutishauser U., Grumet M., Edelman G. M. Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture. J Cell Biol. 1983 Jul;97(1):145–152. doi: 10.1083/jcb.97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Warner A. E., Guthrie S. C., Gilula N. B. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature. 1984 Sep 13;311(5982):127–131. doi: 10.1038/311127a0. [DOI] [PubMed] [Google Scholar]
  30. Warner A. E., Lawrence P. A. Permeability of gap junctions at the segmental border in insect epidermis. Cell. 1982 Feb;28(2):243–252. doi: 10.1016/0092-8674(82)90342-7. [DOI] [PubMed] [Google Scholar]
  31. Warner A. E. The electrical properties of the ectoderm in the amphibian embryo during induction and early development of the nervous system. J Physiol. 1973 Nov;235(1):267–286. doi: 10.1113/jphysiol.1973.sp010387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Watanabe M., Frelinger A. L., 3rd, Rutishauser U. Topography of N-CAM structural and functional determinants. I. Classification of monoclonal antibody epitopes. J Cell Biol. 1986 Nov;103(5):1721–1727. doi: 10.1083/jcb.103.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Weir M. P., Lo C. W. Gap junctional communication compartments in the Drosophila wing disk. Proc Natl Acad Sci U S A. 1982 May;79(10):3232–3235. doi: 10.1073/pnas.79.10.3232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. de Laat S. W., Tertoolen L. G., Dorresteijn A. W., van den Biggelaar J. A. Intercellular communication patterns are involved in cell determination in early molluscan development. Nature. 1980 Oct 9;287(5782):546–548. doi: 10.1038/287546a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES