Abstract
Kinesin was isolated from bovine brain and used to elicit polyclonal antibodies in rabbits. The specificities of the resulting antibodies were evaluated by immunoblotting. Antibodies purified from these sera by their affinity for brain kinesin react with a polypeptide of approximately 120 kD in extracts from bovine brain, PtK1 cells, and mouse neuroblastoma cells. They bind to a pair of polypeptides of approximately 120 kD present in crude kinesin prepared from Xenopus eggs and with a single polypeptide of approximately 115 kD in extracts from Drosophila embryos. Antibodies raised against kinesin prepared from fruit fly embryos (by W. M. Saxton, Indiana University, Bloomington, IN) and from neural tissues of the squid (by M. P. Sheetz, Washington University, St. Louis, MO) cross react with the mammalian, the fly, and the frog polypeptides. Kinesin antigen was localized in cultured cells by indirect immunofluorescence. PtK1 cells in interphase showed dim background staining of cytoplasmic membranous components and bright staining of a small, fibrous, juxtanuclear structure. Double staining with antibodies to microtubules showed that the fibrous object was usually located near the centrosome. On the basis of shape, size, and location, we identify the kinesin-positive structure as a primary cilium. PtK1 cells in mitosis are stained at their poles during all stages of division. The structure stained is approximately spherical, but wisps of faint fluorescence also extend into the body of the spindle. Antibodies to squid or fruit fly kinesin produce identical patterns in PtK1 cells. Controls with preimmune and preabsorbed sera show that the centrosome staining is not due simply to the common tendency of rabbit antisera to stain this structure. Similar centrosome and spindle pole staining was visible when antibodies to bovine brain or squid kinesin were applied to the A6 cell line (kidney epithelial cells from Xenopus laevis). Some possible functions of kinesin localized at the spindle poles are discussed.
Full Text
The Full Text of this article is available as a PDF (4.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht-Buehler G., Bushnell A. The ultrastructure of primary cilia in quiescent 3T3 cells. Exp Cell Res. 1980 Apr;126(2):427–437. doi: 10.1016/0014-4827(80)90282-7. [DOI] [PubMed] [Google Scholar]
- Bloodgood R. A. Motility occurring in association with the surface of the Chlamydomonas flagellum. J Cell Biol. 1977 Dec;75(3):983–989. doi: 10.1083/jcb.75.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Cohn S. A., Ingold A. L., Scholey J. M. Correlation between the ATPase and microtubule translocating activities of sea urchin egg kinesin. Nature. 1987 Jul 9;328(6126):160–163. doi: 10.1038/328160a0. [DOI] [PubMed] [Google Scholar]
- Connolly J. A., Kalnins V. I. Visualization of centrioles and basal bodies by fluorescent staining with nonimmune rabbit sera. J Cell Biol. 1978 Nov;79(2 Pt 1):526–532. doi: 10.1083/jcb.79.2.526. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Euteneuer U., McIntosh J. R. Structural polarity of kinetochore microtubules in PtK1 cells. J Cell Biol. 1981 May;89(2):338–345. doi: 10.1083/jcb.89.2.338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FORER A. LOCAL REDUCTION OF SPINDLE FIBER BIREFRINGENCE IN LIVING NEPHROTOMA SUTURALIS (LOEW) SPERMATOCYTES INDUCED BY ULTRAVIOLET MICROBEAM IRRADIATION. J Cell Biol. 1965 Apr;25:SUPPL–SUPPL117. doi: 10.1083/jcb.25.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giloh H., Sedat J. W. Fluorescence microscopy: reduced photobleaching of rhodamine and fluorescein protein conjugates by n-propyl gallate. Science. 1982 Sep 24;217(4566):1252–1255. doi: 10.1126/science.7112126. [DOI] [PubMed] [Google Scholar]
- Goldstein L. S., Laymon R. A., McIntosh J. R. A microtubule-associated protein in Drosophila melanogaster: identification, characterization, and isolation of coding sequences. J Cell Biol. 1986 Jun;102(6):2076–2087. doi: 10.1083/jcb.102.6.2076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorbsky G. J., Sammak P. J., Borisy G. G. Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol. 1987 Jan;104(1):9–18. doi: 10.1083/jcb.104.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hepler P. K., Wolniak S. M. Membranes in the mitotic apparatus: their structure and function. Int Rev Cytol. 1984;90:169–238. doi: 10.1016/s0074-7696(08)61490-4. [DOI] [PubMed] [Google Scholar]
- Jensen C. G., Davison E. A., Bowser S. S., Rieder C. L. Primary cilia cycle in PtK1 cells: effects of colcemid and taxol on cilia formation and resorption. Cell Motil Cytoskeleton. 1987;7(3):187–197. doi: 10.1002/cm.970070302. [DOI] [PubMed] [Google Scholar]
- Kuznetsov S. A., Gelfand V. I. Bovine brain kinesin is a microtubule-activated ATPase. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8530–8534. doi: 10.1073/pnas.83.22.8530. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leslie R. J., Hird R. B., Wilson L., McIntosh J. R., Scholey J. M. Kinesin is associated with a nonmicrotubule component of sea urchin mitotic spindles. Proc Natl Acad Sci U S A. 1987 May;84(9):2771–2775. doi: 10.1073/pnas.84.9.2771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McDonald K. Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J Ultrastruct Res. 1984 Feb;86(2):107–118. doi: 10.1016/s0022-5320(84)80051-9. [DOI] [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
- Mitchison T., Evans L., Schulze E., Kirschner M. Sites of microtubule assembly and disassembly in the mitotic spindle. Cell. 1986 May 23;45(4):515–527. doi: 10.1016/0092-8674(86)90283-7. [DOI] [PubMed] [Google Scholar]
- Paweletz N. Membranes in the mitotic apparatus. Cell Biol Int Rep. 1981 Apr;5(4):323–336. doi: 10.1016/0309-1651(81)90001-1. [DOI] [PubMed] [Google Scholar]
- Porter M. E., Scholey J. M., Stemple D. L., Vigers G. P., Vale R. D., Sheetz M. P., McIntosh J. R. Characterization of the microtubule movement produced by sea urchin egg kinesin. J Biol Chem. 1987 Feb 25;262(6):2794–2802. [PubMed] [Google Scholar]
- Rebhun L. I. Polarized intracellular particle transport: saltatory movements and cytoplasmic streaming. Int Rev Cytol. 1972;32:93–137. doi: 10.1016/s0074-7696(08)60339-3. [DOI] [PubMed] [Google Scholar]
- Saxton W. M., Porter M. E., Cohn S. A., Scholey J. M., Raff E. C., McIntosh J. R. Drosophila kinesin: characterization of microtubule motility and ATPase. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1109–1113. doi: 10.1073/pnas.85.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schaap C. J., Forer A. Video digitizer analysis of birefringence along the lengths of single chromosomal spindle fibres. I. Description of the system and general results. J Cell Sci. 1984 Jan;65:21–40. doi: 10.1242/jcs.65.1.21. [DOI] [PubMed] [Google Scholar]
- Scholey J. M., Neighbors B., McIntosh J. R., Salmon E. D. Isolation of microtubules and a dynein-like MgATPase from unfertilized sea urchin eggs. J Biol Chem. 1984 May 25;259(10):6516–6525. [PubMed] [Google Scholar]
- Scholey J. M., Porter M. E., Grissom P. M., McIntosh J. R. Identification of kinesin in sea urchin eggs, and evidence for its localization in the mitotic spindle. Nature. 1985 Dec 5;318(6045):483–486. doi: 10.1038/318483a0. [DOI] [PubMed] [Google Scholar]
- Schroeter D., Ehemann V., Paweletz N. Cellular compartments in mitotic cells: ultrahistochemical identification of Golgi elements in PtK-1 cells. Biol Cell. 1985;53(2):155–163. doi: 10.1111/j.1768-322x.1985.tb00363.x. [DOI] [PubMed] [Google Scholar]
- Talian J. C., Olmsted J. B., Goldman R. D. A rapid procedure for preparing fluorescein-labeled specific antibodies from whole antiserum: its use in analyzing cytoskeletal architecture. J Cell Biol. 1983 Oct;97(4):1277–1282. doi: 10.1083/jcb.97.4.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tippit D. H., Pickett-Heaps J. D. Mitosis in the pennate diatom Surirella ovalis. J Cell Biol. 1977 Jun;73(3):705–727. doi: 10.1083/jcb.73.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tooze J., Burke B. Accumulation of adrenocorticotropin secretory granules in the midbody of telophase AtT20 cells: evidence that secretory granules move anterogradely along microtubules. J Cell Biol. 1987 Apr;104(4):1047–1057. doi: 10.1083/jcb.104.4.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D., Reese T. S., Sheetz M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell. 1985 Aug;42(1):39–50. doi: 10.1016/s0092-8674(85)80099-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vale R. D., Schnapp B. J., Mitchison T., Steuer E., Reese T. S., Sheetz M. P. Different axoplasmic proteins generate movement in opposite directions along microtubules in vitro. Cell. 1985 Dec;43(3 Pt 2):623–632. doi: 10.1016/0092-8674(85)90234-x. [DOI] [PubMed] [Google Scholar]
- Vale R. D., Schnapp B. J., Reese T. S., Sheetz M. P. Organelle, bead, and microtubule translocations promoted by soluble factors from the squid giant axon. Cell. 1985 Mar;40(3):559–569. doi: 10.1016/0092-8674(85)90204-1. [DOI] [PubMed] [Google Scholar]
- Vorobjev I. A., Chentsov YuS Centrioles in the cell cycle. I. Epithelial cells. J Cell Biol. 1982 Jun;93(3):938–949. doi: 10.1083/jcb.93.3.938. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams R. C., Jr, Detrich H. W., 3rd Separation of tubulin from microtubule-associated proteins on phosphocellulose. Accompanying alterations in concentrations of buffer components. Biochemistry. 1979 Jun 12;18(12):2499–2503. doi: 10.1021/bi00579a010. [DOI] [PubMed] [Google Scholar]