Abstract
The cytoskeleton in squid photoreceptor microvilli was studied by freeze-substitution electron microscopy combined with rapid freezing using liquid helium, under dark-adapted and light-illuminated conditions. In the dark-adapted microvilli, actin filaments were regularly associated with granular structures on their surface; these granular structures were cross-linked to the rhodopsin-bearing plasma membranes through slender strands. Upon exposure to light, the granular components detached from the actin filaments, which then appeared to be fragmented and/or depolymerized. These observations have led us to conclude that light stimulation triggers the breakdown of the microvillar actin filament complex in squid photoreceptor cells. The results are discussed with special reference to the physiological role of actin filaments in photoreception.
Full Text
The Full Text of this article is available as a PDF (6.8 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bader C., Baumann F., Bertrand D. Role of intracellular calcium and sodium in light adaptation in the retina of the honey bee drone (Apis mellifera, L). J Gen Physiol. 1976 Apr;67(4):475–491. doi: 10.1085/jgp.67.4.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blest A. D., Stowe S., Eddey W. A labile, Ca2+-dependent cytoskeleton in rhabdomeral microvilli of blowflies. Cell Tissue Res. 1982;223(3):553–573. doi: 10.1007/BF00218476. [DOI] [PubMed] [Google Scholar]
- Brown J. E. Calcium ion, a putative intracellular messenger for light-adaptation in Limulus ventral photoreceptors. Biophys Struct Mech. 1977 Jun 29;3(2):141–143. doi: 10.1007/BF00535809. [DOI] [PubMed] [Google Scholar]
- Cohen A. I. An ultrastructural analysis of the photoreceptors of the squid and their synaptic connections. I. Photoreceptive and non-synaptic regions of the retina. J Comp Neurol. 1973 Feb 1;147(3):351–378. doi: 10.1002/cne.901470304. [DOI] [PubMed] [Google Scholar]
- Eakin R. M., Brandenburger J. L. Effects of light and dark on photoreceptors in the polychaete annelid Nereis limnicola. Cell Tissue Res. 1985;242(3):613–622. doi: 10.1007/BF00225427. [DOI] [PubMed] [Google Scholar]
- HAGINS W. A., ZONANA H. V., ADAMS R. G. Local membrane current in the outer segments of squid photoreceptors. Nature. 1962 Jun 2;194:844–847. doi: 10.1038/194844a0. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumoto G. Transportation and maintenance of adult squid (Doryteuthis bleekeri) for physiological studies. Biol Bull. 1976 Apr;150(2):279–285. doi: 10.2307/1540474. [DOI] [PubMed] [Google Scholar]
- Matsumoto H., Isono K., Pye Q., Pak W. L. Gene encoding cytoskeletal proteins in Drosophila rhabdomeres. Proc Natl Acad Sci U S A. 1987 Feb;84(4):985–989. doi: 10.1073/pnas.84.4.985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saibil H. R. A light-stimulated increase of cyclic GMP in squid photoreceptors. FEBS Lett. 1984 Mar 26;168(2):213–216. doi: 10.1016/0014-5793(84)80248-3. [DOI] [PubMed] [Google Scholar]
- Saibil H. R. An ordered membrane-cytoskeleton network in squid photoreceptor microvilli. J Mol Biol. 1982 Jul 5;158(3):435–456. doi: 10.1016/0022-2836(82)90208-x. [DOI] [PubMed] [Google Scholar]
- Saibil H., Hewat E. Ordered transmembrane and extracellular structure in squid photoreceptor microvilli. J Cell Biol. 1987 Jul;105(1):19–28. doi: 10.1083/jcb.105.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schröder W., Frings D., Stieve H. Measuring calcium uptake and release by invertebrate photoreceptor cells by laser microprobe mass spectroscopy. Scan Electron Microsc. 1980;(Pt 2):647-54, 606. [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Usukura J., Ishikawa H. Myosin filaments in smooth muscle cells of the guinea pig taenia coli: a freeze-substitution study. Eur J Cell Biol. 1982 Oct;28(2):195–201. [PubMed] [Google Scholar]
- Tsukita S., Usukura J., Tsukita S., Ishikawa H. The cytoskeleton in myelinated axons: a freeze-etch replica study. Neuroscience. 1982;7(9):2135–2147. doi: 10.1016/0306-4522(82)90125-7. [DOI] [PubMed] [Google Scholar]
- Tsukita S., Yano M. Actomyosin structure in contracting muscle detected by rapid freezing. Nature. 1985 Sep 12;317(6033):182–184. doi: 10.1038/317182a0. [DOI] [PubMed] [Google Scholar]
- Varela F. G., Porter K. R. Fine structure of the visual system of the honeybee (Apis mellifera). I. The retina. J Ultrastruct Res. 1969 Nov;29(3):236–259. doi: 10.1016/s0022-5320(69)90104-x. [DOI] [PubMed] [Google Scholar]
- de Couet H. G., Stowe S., Blest A. D. Membrane-associated actin in the rhabdomeral microvilli of crayfish photoreceptors. J Cell Biol. 1984 Mar;98(3):834–846. doi: 10.1083/jcb.98.3.834. [DOI] [PMC free article] [PubMed] [Google Scholar]