Abstract
By cosedimentation, spectrofluorimetry, and electron microscopy, we have established that actin is induced to polymerize at low salt concentrations by positively charged liposomes. This polymerization occurs only at the surface of the liposomes, and thus monomers not in direct contact with the liposome remain monomeric. The integrity of the liposome membrane is necessary to maintain actin in its polymerized state since disruption of the liposome depolymerizes actin. Actin polymerized at the surface of the liposome is organized into two filamentous structures: sheets of parallel filaments in register and a netlike organization. Spectrofluorimetric analysis with the probe N- pyrenyl-iodoacetamide shows that actin is in the F conformation, at least in the environment of the probe. However, actin assembly induced by the liposome is not accompanied by full ATP hydrolysis as observed in vitro upon addition of salts.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARANY M., BIRO N. A., MOLNAR J. Uber die Reaktion zwischen Aktin und zweiwertigen Kationen. Acta Physiol Acad Sci Hung. 1954;5(1-2):63–78. [PubMed] [Google Scholar]
- Brenner S. L., Korn E. D. On the mechanism of actin monomer-polymer subunit exchange at steady state. J Biol Chem. 1983 Apr 25;258(8):5013–5020. [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D. Direct evidence for ADP-Pi-F-actin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments. Biochemistry. 1986 Dec 2;25(24):7789–7792. doi: 10.1021/bi00372a001. [DOI] [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D., Korn E. D. Evidence for an ATP cap at the ends of actin filaments and its regulation of the F-actin steady state. J Biol Chem. 1984 Aug 25;259(16):9983–9986. [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D., Korn E. D. Polymerization of ADP-actin and ATP-actin under sonication and characteristics of the ATP-actin equilibrium polymer. J Biol Chem. 1985 Jun 10;260(11):6565–6571. [PubMed] [Google Scholar]
- Clarke M., Spudich J. A. Nonmuscle contractile proteins: the role of actin and myosin in cell motility and shape determination. Annu Rev Biochem. 1977;46:797–822. doi: 10.1146/annurev.bi.46.070177.004053. [DOI] [PubMed] [Google Scholar]
- Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
- Frieden C. Actin and tubulin polymerization: the use of kinetic methods to determine mechanism. Annu Rev Biophys Biophys Chem. 1985;14:189–210. doi: 10.1146/annurev.bb.14.060185.001201. [DOI] [PubMed] [Google Scholar]
- Frieden C. Polymerization of actin: mechanism of the Mg2+-induced process at pH 8 and 20 degrees C. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6513–6517. doi: 10.1073/pnas.80.21.6513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grazi E., Trombetta G., Magri E. A mechanism for the selective preservation of homogeneous. F(ATP) actin. Biochem Int. 1984 Nov;9(5):669–674. [PubMed] [Google Scholar]
- Hanson J. Evidence from electron microscope studies on actin paracrystals concerning the origin of the cross-striation in the thin filaments of vertebrate skeletal muscle. Proc R Soc Lond B Biol Sci. 1973 Feb 27;183(1070):39–58. doi: 10.1098/rspb.1973.0003. [DOI] [PubMed] [Google Scholar]
- Harwell O. D., Sweeney M. L., Kirkpatrick F. H. Conformation changes of actin during formation of filaments and paracrystals and upon interaction with DNase I, cytochalasin B, and phalloidin. J Biol Chem. 1980 Feb 10;255(3):1210–1220. [PubMed] [Google Scholar]
- Higashi S., Oosawa F. Conformational changes associated with polymerization and nucleotide binding in actin molecules. J Mol Biol. 1965 Jul;12(3):843–865. doi: 10.1016/s0022-2836(65)80332-1. [DOI] [PubMed] [Google Scholar]
- KASAI M., ASAKURA S., OOSAWA F. The cooperative nature of G-F transformation of actin. Biochim Biophys Acta. 1962 Feb 12;57:22–31. doi: 10.1016/0006-3002(62)91073-9. [DOI] [PubMed] [Google Scholar]
- Kasai M. Thermodynamical aspect of G-F transformations of actin. Biochim Biophys Acta. 1969 Jun 24;180(2):399–409. doi: 10.1016/0005-2728(69)90124-8. [DOI] [PubMed] [Google Scholar]
- Keiser T., Schiller A., Wegner A. Nonlinear increase of elongation rate of actin filaments with actin monomer concentration. Biochemistry. 1986 Aug 26;25(17):4899–4906. doi: 10.1021/bi00365a026. [DOI] [PubMed] [Google Scholar]
- Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
- Kouyama T., Mihashi K. Fluorimetry study of N-(1-pyrenyl)iodoacetamide-labelled F-actin. Local structural change of actin protomer both on polymerization and on binding of heavy meromyosin. Eur J Biochem. 1981;114(1):33–38. [PubMed] [Google Scholar]
- Lal A. A., Brenner S. L., Korn E. D. Preparation and polymerization of skeletal muscle ADP-actin. J Biol Chem. 1984 Nov 10;259(21):13061–13065. [PubMed] [Google Scholar]
- Lehrer S. S., Kerwar G. Intrinsic fluorescence of actin. Biochemistry. 1972 Mar 28;11(7):1211–1217. doi: 10.1021/bi00757a015. [DOI] [PubMed] [Google Scholar]
- MAGASANIK B., VISCHER E., DONIGER R., ELSON D., CHARGAFF E. The separation and estimation of ribonucleotides in minute quantities. J Biol Chem. 1950 Sep;186(1):37–50. [PubMed] [Google Scholar]
- MARTONOSII A., MOLINO C. M., GERGELY J. THE BINDING OF DIVALENT CATIONS TO ACTIN. J Biol Chem. 1964 Apr;239:1057–1064. [PubMed] [Google Scholar]
- MOMMAERTS W. F. H. M. The molecular transformations of actin. II. The polymerization process. J Biol Chem. 1952 Sep;198(1):459–467. [PubMed] [Google Scholar]
- Moore P. B., Huxley H. E., DeRosier D. J. Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. J Mol Biol. 1970 Jun 14;50(2):279–295. doi: 10.1016/0022-2836(70)90192-0. [DOI] [PubMed] [Google Scholar]
- Nonomura Y., Katayama E., Ebashi S. Effect of phosphates on the structure of the actin filament. J Biochem. 1975 Nov;78(5):1101–1104. doi: 10.1093/oxfordjournals.jbchem.a130988. [DOI] [PubMed] [Google Scholar]
- Pantaloni D., Carlier M. F., Korn E. D. The interaction between ATP-actin and ADP-actin. A tentative model for actin polymerization. J Biol Chem. 1985 Jun 10;260(11):6572–6578. [PubMed] [Google Scholar]
- Pantaloni D., Hill T. L., Carlier M. F., Korn E. D. A model for actin polymerization and the kinetic effects of ATP hydrolysis. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7207–7211. doi: 10.1073/pnas.82.21.7207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pardee J. D., Spudich J. A. Mechanism of K+-induced actin assembly. J Cell Biol. 1982 Jun;93(3):648–654. doi: 10.1083/jcb.93.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Cooper J. A. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu Rev Biochem. 1986;55:987–1035. doi: 10.1146/annurev.bi.55.070186.005011. [DOI] [PubMed] [Google Scholar]
- Pollard T. D., Mooseker M. S. Direct measurement of actin polymerization rate constants by electron microscopy of actin filaments nucleated by isolated microvillus cores. J Cell Biol. 1981 Mar;88(3):654–659. doi: 10.1083/jcb.88.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pollard T. D., Weeds A. G. The rate constant for ATP hydrolysis by polymerized actin. FEBS Lett. 1984 May 7;170(1):94–98. doi: 10.1016/0014-5793(84)81376-9. [DOI] [PubMed] [Google Scholar]
- Rich S. A., Estes J. E. Detection of conformational changes in actin by proteolytic digestion: evidence for a new monomeric species. J Mol Biol. 1976 Jul 15;104(4):777–792. doi: 10.1016/0022-2836(76)90181-9. [DOI] [PubMed] [Google Scholar]
- Rioux L., Gicquaud C. Actin paracrystalline sheets formed at the surface of positively charged liposomes. J Ultrastruct Res. 1985 Oct-Nov;93(1-2):42–49. doi: 10.1016/0889-1605(85)90084-9. [DOI] [PubMed] [Google Scholar]
- Rouayrenc J. F., Travers F. The first step in the polymerisation of actin. Eur J Biochem. 1981 May;116(1):73–77. doi: 10.1111/j.1432-1033.1981.tb05302.x. [DOI] [PubMed] [Google Scholar]
- Selden L. A., Gershman L. C., Estes J. E. A kinetic comparison between Mg-actin and Ca-actin. J Muscle Res Cell Motil. 1986 Jun;7(3):215–224. doi: 10.1007/BF01753554. [DOI] [PubMed] [Google Scholar]
- Smith P. R., Fowler W. E., Aebi U. Towards an alignment of the actin molecule within the actin filament. Ultramicroscopy. 1984;13(1-2):113–123. doi: 10.1016/0304-3991(84)90062-7. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Cooke R. Supramolecular forms of actin from amoebae of Dictyostelium discoideum. J Biol Chem. 1975 Sep 25;250(18):7485–7491. [PubMed] [Google Scholar]
- Spudich J. A., Huxley H. E., Finch J. T. Regulation of skeletal muscle contraction. II. Structural studies of the interaction of the tropomyosin-troponin complex with actin. J Mol Biol. 1972 Dec 30;72(3):619–632. doi: 10.1016/0022-2836(72)90180-5. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Pròchniewicz E., Drabikowski W. Interaction of actin with divalent cations. 1. The effect of various cations on the physical state of actin. Eur J Biochem. 1978 Jul 17;88(1):219–227. doi: 10.1111/j.1432-1033.1978.tb12441.x. [DOI] [PubMed] [Google Scholar]
- Strzelecka-Gołaszewska H., Pròchniewicz E., Drabikowski W. Interaction of actin with divalent cations. 2. Characterization of protein-metal complexes. Eur J Biochem. 1978 Jul 17;88(1):229–237. doi: 10.1111/j.1432-1033.1978.tb12442.x. [DOI] [PubMed] [Google Scholar]
- Szoka F., Jr, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4194–4198. doi: 10.1073/pnas.75.9.4194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tellam R. Mechanism of CaCl2-induced actin polymerization. Biochemistry. 1985 Jul 30;24(16):4455–4460. doi: 10.1021/bi00337a029. [DOI] [PubMed] [Google Scholar]
- Tobacman L. S., Korn E. D. The kinetics of actin nucleation and polymerization. J Biol Chem. 1983 Mar 10;258(5):3207–3214. [PubMed] [Google Scholar]
- Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
- Yamamoto K., Yanagida M., Kawamura M., Maruyama K., Noda H. A study on the structure of paracrystals of F-actin. J Mol Biol. 1975 Feb 5;91(4):463–469. doi: 10.1016/0022-2836(75)90272-7. [DOI] [PubMed] [Google Scholar]
