Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Apr 1;106(4):1349–1358. doi: 10.1083/jcb.106.4.1349

Cell-substrate adhesion during Trypanosoma cruzi differentiation

PMCID: PMC2115030  PMID: 3283152

Abstract

The transformation of Trypanosoma cruzi epimastigotes to the mammal infective metacyclic trypomastigotes (metacyclogenesis) can be performed in vitro under chemically defined conditions. Under these conditions, differentiating epimastigotes adhere to a surface before their transformation into metacyclic trypomastigotes. Scanning and transmission electron microscopy of adhered and non-adhered parasites during the metacyclogenesis process show that only epimastigotes and few transition forms are found in the first population, whereas metacyclic trypomastigotes are exclusively found in the cell culture supernatant. PAGE analysis of the [35S]methionine metabolic labeling products of adhered and non-adhered parasites shows that although most of the polypeptides are conserved, adhered parasites express specifically four polypeptides in the range of 45-50 kD with an isoelectric point of 4.8. These proteins might be involved in the adhesion process and are recognized by an antiserum against total adhered parasite proteins. This antiserum also recognized a group of 45- 50 kD in the iodine-radiolabeled surface proteins of differentiating cells, providing direct evidence that these components are indeed surface antigens. The results suggest that epimastigotes must adhere to a substrate before their transformation to metacyclic trypomastigotes, being released to the medium as the metacyclogenesis process is accomplished. This could correspond to the process naturally occurring within the triatomine invertebrate host.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382. doi: 10.1146/annurev.mi.27.100173.002023. [DOI] [PubMed] [Google Scholar]
  2. Böker C. A., Schaub G. A. Scanning electron microscopic studies of Trypanosoma cruzi in the rectum of its vector Triatoma infestans. Z Parasitenkd. 1984;70(4):459–469. doi: 10.1007/BF00926686. [DOI] [PubMed] [Google Scholar]
  3. CAMARGO E. P. GROWTH AND DIFFERENTIATION IN TRYPANOSOMA CRUZI. I. ORIGIN OF METACYCLIC TRYPANOSOMES IN LIQUID MEDIA. Rev Inst Med Trop Sao Paulo. 1964 May-Jun;6:93–100. [PubMed] [Google Scholar]
  4. Camargo E. P., Barbieri C. L., Jankevicius J. V. Possible artifacts in the radioiodination of surface proteins of trypanosomatids. J Immunol Methods. 1982 Jul 30;52(2):245–253. doi: 10.1016/0022-1759(82)90051-5. [DOI] [PubMed] [Google Scholar]
  5. Contreras V. T., Morel C. M., Goldenberg S. Stage specific gene expression precedes morphological changes during Trypanosoma cruzi metacyclogenesis. Mol Biochem Parasitol. 1985 Jan;14(1):83–96. doi: 10.1016/0166-6851(85)90108-2. [DOI] [PubMed] [Google Scholar]
  6. Contreras V. T., Salles J. M., Thomas N., Morel C. M., Goldenberg S. In vitro differentiation of Trypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol. 1985 Sep;16(3):315–327. doi: 10.1016/0166-6851(85)90073-8. [DOI] [PubMed] [Google Scholar]
  7. Edelman G. M. Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem. 1985;54:135–169. doi: 10.1146/annurev.bi.54.070185.001031. [DOI] [PubMed] [Google Scholar]
  8. Fraker P. J., Speck J. C., Jr Protein and cell membrane iodinations with a sparingly soluble chloroamide, 1,3,4,6-tetrachloro-3a,6a-diphrenylglycoluril. Biochem Biophys Res Commun. 1978 Feb 28;80(4):849–857. doi: 10.1016/0006-291x(78)91322-0. [DOI] [PubMed] [Google Scholar]
  9. Gerisch G. Inter-relation of cell adhesion and differentiation in Dictyostelium discoideum. J Cell Sci Suppl. 1986;4:201–219. doi: 10.1242/jcs.1986.supplement_4.13. [DOI] [PubMed] [Google Scholar]
  10. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  11. Laskey R. A., Mills A. D. Enhanced autoradiographic detection of 32P and 125I using intensifying screens and hypersensitized film. FEBS Lett. 1977 Oct 15;82(2):314–316. doi: 10.1016/0014-5793(77)80609-1. [DOI] [PubMed] [Google Scholar]
  12. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  13. Souto-Padrón T., de Carvalho T. U., Chiari E., de Souza W. Further studies on the cell surface charge of Trypanosoma cruzi. Acta Trop. 1984 Sep;41(3):215–225. [PubMed] [Google Scholar]
  14. Souto-Padrón T., de Souza W. Sialoglycoproteins and sialoglycolipids contribute to the negative surface charge of epimastigote and trypomastigote forms of Trypanosoma cruzi. Biochim Biophys Acta. 1985 Mar 28;814(1):163–169. doi: 10.1016/0005-2736(85)90432-8. [DOI] [PubMed] [Google Scholar]
  15. Zeledón R., Bolaños R., Rojas M. Scanning electron microscopy of the final phase of the life cycle of Trypanosoma cruzi in the insect vector. Acta Trop. 1984 Mar;41(1):39–43. [PubMed] [Google Scholar]
  16. de Souza W. Cell biology of Trypanosoma cruzi. Int Rev Cytol. 1984;86:197–283. doi: 10.1016/s0074-7696(08)60180-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES