Abstract
cAMP and cGMP had distinct effects on the regulation of ciliary motility in Paramecium. Using detergent-permeabilized cells reactivated to swim with MgATP, we observed effects of cyclic nucleotides and interactions with Ca2+ on the swimming speed and direction of reactivated cells. Both cAMP and cGMP increased forward swimming speed two- to threefold with similar half-maximal concentrations near 0.5 microM. The two cyclic nucleotides, however, had different effects in antagonism with the Ca2+ response of backward swimming and on the handedness of the helical swimming paths of reactivated cells. These results suggest that cAMP and cGMP differentially regulate the direction of the ciliary power stroke.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adelstein R. S., Eisenberg E. Regulation and kinetics of the actin-myosin-ATP interaction. Annu Rev Biochem. 1980;49:921–956. doi: 10.1146/annurev.bi.49.070180.004421. [DOI] [PubMed] [Google Scholar]
- Bonini N. M., Gustin M. C., Nelson D. L. Regulation of ciliary motility by membrane potential in Paramecium: a role for cyclic AMP. Cell Motil Cytoskeleton. 1986;6(3):256–272. doi: 10.1002/cm.970060303. [DOI] [PubMed] [Google Scholar]
- Brandt H., Hoskins D. D. A cAMP-dependent phosphorylated motility protein in bovine epididymal sperm. J Biol Chem. 1980 Feb 10;255(3):982–987. [PubMed] [Google Scholar]
- Brokaw C. J., Nagayama S. M. Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin. J Cell Biol. 1985 Jun;100(6):1875–1883. doi: 10.1083/jcb.100.6.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dryl S., Grebecki A. Progress in the study of excitation and response in ciliates. Protoplasma. 1966;62(2):255–284. doi: 10.1007/BF01248088. [DOI] [PubMed] [Google Scholar]
- Eistetter H., Seckler B., Bryniok D., Schultz J. E. Phosphorylation of endogenous proteins of cilia from Paramecium tetraurelia in vitro. Eur J Cell Biol. 1983 Sep;31(2):220–226. [PubMed] [Google Scholar]
- GIBBONS I. R. STUDIES ON THE PROTEIN COMPONENTS OF CILIA FROM TETRAHYMENA PYRIFORMIS. Proc Natl Acad Sci U S A. 1963 Nov;50:1002–1010. doi: 10.1073/pnas.50.5.1002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R. Cilia and flagella of eukaryotes. J Cell Biol. 1981 Dec;91(3 Pt 2):107s–124s. doi: 10.1083/jcb.91.3.107s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilson C. A., Ackland N., Burnside B. Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium. J Cell Biol. 1986 Mar;102(3):1047–1059. doi: 10.1083/jcb.102.3.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg N. D., Haddox M. K. Cyclic GMP metabolism and involvement in biological regulation. Annu Rev Biochem. 1977;46:823–896. doi: 10.1146/annurev.bi.46.070177.004135. [DOI] [PubMed] [Google Scholar]
- Gray J. P., Drummond G. I. Guanylate cyclase of sea urchin sperm: subcellular localization. Arch Biochem Biophys. 1976 Jan;172(1):31–38. doi: 10.1016/0003-9861(76)90044-8. [DOI] [PubMed] [Google Scholar]
- Greengard P. Phosphorylated proteins as physiological effectors. Science. 1978 Jan 13;199(4325):146–152. doi: 10.1126/science.22932. [DOI] [PubMed] [Google Scholar]
- Gustin M. C., Nelson D. L. Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium. Biochem J. 1987 Sep 1;246(2):337–345. doi: 10.1042/bj2460337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haga N., Forte M., Ramanathan R., Hennessey T., Takahashi M., Kung C. Characterization and purification of a soluble protein controlling Ca-channel activity in paramecium. Cell. 1984 Nov;39(1):71–78. doi: 10.1016/0092-8674(84)90192-2. [DOI] [PubMed] [Google Scholar]
- Hansbrough J. R., Kopf G. S., Garbers D. L. The stimulation of sperm metabolism by a factor associated with eggs and by 8-bromo-guanosine 3',5'-monophosphate. Biochim Biophys Acta. 1980 Jun 5;630(1):82–91. doi: 10.1016/0304-4165(80)90139-7. [DOI] [PubMed] [Google Scholar]
- Hennessey T., Machemer H., Nelson D. L. Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization. Eur J Cell Biol. 1985 Mar;36(2):153–156. [PubMed] [Google Scholar]
- Hinrichsen R. D., Burgess-Cassler A., Soltvedt B. C., Hennessey T., Kung C. Restoration by calmodulin of a Ca2+-dependent K+ current missing in a mutant of Paramecium. Science. 1986 Apr 25;232(4749):503–506. doi: 10.1126/science.2421410. [DOI] [PubMed] [Google Scholar]
- Ishiguro K., Murofushi H., Sakai H. Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of triton X-100 models of sea urchin and starfish spermatozoa. J Cell Biol. 1982 Mar;92(3):777–782. doi: 10.1083/jcb.92.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson K. A. Pathway of the microtubule-dynein ATPase and the structure of dynein: a comparison with actomyosin. Annu Rev Biophys Biophys Chem. 1985;14:161–188. doi: 10.1146/annurev.bb.14.060185.001113. [DOI] [PubMed] [Google Scholar]
- Kung C., Saimi Y. The physiological basis of taxes in Paramecium. Annu Rev Physiol. 1982;44:519–534. doi: 10.1146/annurev.ph.44.030182.002511. [DOI] [PubMed] [Google Scholar]
- Lewis R. M., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia VI. Endogenous protein substrates for in vitro and in vivo phosphorylation in cilia and ciliary membranes. J Cell Biol. 1981 Oct;91(1):167–174. doi: 10.1083/jcb.91.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindemann C. B. A cAMP-induced increase in the motility of demembranated bull sperm models. Cell. 1978 Jan;13(1):9–18. doi: 10.1016/0092-8674(78)90133-2. [DOI] [PubMed] [Google Scholar]
- Lynch T. J., Wu B. Y., Taylor J. D., Tchen T. T. Regulation of pigment organelle translocation. II. Participation of a cAMP-dependent protein kinase. J Biol Chem. 1986 Mar 25;261(9):4212–4216. [PubMed] [Google Scholar]
- Machemer H. Ciliary activity and the origin of metachrony in Paramecium: effects of increased viscosity. J Exp Biol. 1972 Aug;57(1):239–259. doi: 10.1242/jeb.57.1.239. [DOI] [PubMed] [Google Scholar]
- Naito Y., Kaneko H. Control of ciliary activities by adenosinetriphosphate and divalent cations in triton-extracted models of Paramecium caudatum. J Exp Biol. 1973 Jun;58(3):657–676. doi: 10.1242/jeb.58.3.657. [DOI] [PubMed] [Google Scholar]
- Naito Y., Kaneko H. Reactivated triton-extracted models o paramecium: modification of ciliary movement by calcium ions. Science. 1972 May 5;176(4034):523–524. doi: 10.1126/science.176.4034.523. [DOI] [PubMed] [Google Scholar]
- Naitoh Y., Eckert R. Ionic mechanisms controlling behavioral responses of paramecium to mechanical stimulation. Science. 1969 May 23;164(3882):963–965. doi: 10.1126/science.164.3882.963. [DOI] [PubMed] [Google Scholar]
- Naitoh Y. Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J Gen Physiol. 1968 Jan;51(1):85–103. doi: 10.1085/jgp.51.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakaoka Y., Ooi H. Regulation of ciliary reversal in triton-extracted Paramecium by calcium and cyclic adenosine monophosphate. J Cell Sci. 1985 Aug;77:185–195. doi: 10.1242/jcs.77.1.185. [DOI] [PubMed] [Google Scholar]
- Nakaoka Y., Tanaka H., Oosawa F. Ca2+-dependent regulation of beat frequency of cilia in Paramecium. J Cell Sci. 1984 Jan;65:223–231. doi: 10.1242/jcs.65.1.223. [DOI] [PubMed] [Google Scholar]
- Piperno G., Luck D. J. Inner arm dyneins from flagella of Chlamydomonas reinhardtii. Cell. 1981 Dec;27(2 Pt 1):331–340. doi: 10.1016/0092-8674(81)90416-5. [DOI] [PubMed] [Google Scholar]
- Rozdzial M. M., Haimo L. T. Bidirectional pigment granule movements of melanophores are regulated by protein phosphorylation and dephosphorylation. Cell. 1986 Dec 26;47(6):1061–1070. doi: 10.1016/0092-8674(86)90821-4. [DOI] [PubMed] [Google Scholar]
- Saimi Y., Kung C. Behavioral genetics of Paramecium. Annu Rev Genet. 1987;21:47–65. doi: 10.1146/annurev.ge.21.120187.000403. [DOI] [PubMed] [Google Scholar]
- Schultz J. E., Grünemund R., von Hirschhausen R., Schönefeld U. Ionic regulation of cyclic AMP levels in Paramecium tetraurelia in vivo. FEBS Lett. 1984 Feb 13;167(1):113–116. doi: 10.1016/0014-5793(84)80843-1. [DOI] [PubMed] [Google Scholar]
- Schultz J. E., Klumpp S. Calcium/calmodulin-regulated guanylate cyclases in the ciliary membranes from Paramecium and tetrahymena. Adv Cyclic Nucleotide Protein Phosphorylation Res. 1984;17:275–283. [PubMed] [Google Scholar]
- Stommel E. W., Stephens R. E. Cyclic AMP and calcium in the differential control of Mytilus gill cilia. J Comp Physiol A. 1985 Oct;157(4):451–459. doi: 10.1007/BF00615145. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Kakar S. S., Means A. R. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin. Cell. 1984 Sep;38(2):551–559. doi: 10.1016/0092-8674(84)90509-9. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Ca2+ regulation of sperm axonemal motility. Methods Enzymol. 1987;139:808–823. doi: 10.1016/0076-6879(87)39128-1. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Cyclic adenosine 3',5' monophosphate, calcium and protein phosphorylation in flagellar motility. Biol Reprod. 1983 Feb;28(1):75–104. doi: 10.1095/biolreprod28.1.75. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod. 1982 May;26(4):745–763. doi: 10.1095/biolreprod26.4.745. [DOI] [PubMed] [Google Scholar]