Abstract
Preliminary data demonstrated that the inhibition of reactivated sperm motility by calcium was correlated with inhibited protein phosphorylation. The inhibition of phosphorylation by Ca2+ was found to be catalyzed by the calmodulin-dependent protein phosphatase (calcineurin). Sperm from dog, pig, and sea urchin contain both the Ca2+-binding B subunit of the enzyme (Mr 15,000) and the calmodulin- binding A subunit with an Mr of 63,000. The sperm A subunit is slightly higher in Mr than reported for other tissues. Inhibition of endogenous calmodulin-dependent protein phosphatase activity with a monospecific antibody revealed the presence of 14 phosphoprotein substrates in sperm for this enzyme. The enzyme was localized to both the flagellum and the postacrosomal region of the sperm head. The flagellar phosphatase activity was quantitatively extracted with 0.6 M KCl from isolated flagella from dog, pig, and sea urchin sperm. All salt-extractable phosphatase activity was inhibited with antibodies against the authentic enzyme. Preincubation of sperm models with the purified phosphatase stimulated curvolinear velocity and lateral head amplitude (important components of hyperactivated swimming patterns) and inhibited beat cross frequency suggesting a role for this enzyme in axonemal function. Our results suggest that calmodulin-dependent protein phosphatase plays a major role in the calcium-dependent regulation of flagellar motility.
Full Text
The Full Text of this article is available as a PDF (1.6 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson N. G., Anderson N. L. Analytical techniques for cell fractions. XXI. Two-dimensional analysis of serum and tissue proteins: multiple isoelectric focusing. Anal Biochem. 1978 Apr;85(2):331–340. doi: 10.1016/0003-2697(78)90229-4. [DOI] [PubMed] [Google Scholar]
- Anderson N. L., Anderson N. G. Analytical techniques for cell fractions. XXII. Two-dimensional analysis of serum and tissue proteins: multiple gradient-slab gel electrophoresis. Anal Biochem. 1978 Apr;85(2):341–354. doi: 10.1016/0003-2697(78)90230-0. [DOI] [PubMed] [Google Scholar]
- Barua M., Bhattacharyya U., Majumder G. C. Occurrence of an ecto-phosphoprotein phosphatase in goat epididymal spermatozoa. Biochem Int. 1985 May;10(5):733–741. [PubMed] [Google Scholar]
- Bell C. W., Fraser C. L., Sale W. S., Tang W. J., Gibbons I. R. Preparation and purification of dynein. Methods Enzymol. 1982;85(Pt B):450–474. doi: 10.1016/0076-6879(82)85045-3. [DOI] [PubMed] [Google Scholar]
- Bentley J. K., Shimomura H., Garbers D. L. Retention of a functional resact receptor in isolated sperm plasma membranes. Cell. 1986 Apr 25;45(2):281–288. doi: 10.1016/0092-8674(86)90392-2. [DOI] [PubMed] [Google Scholar]
- Bessen M., Fay R. B., Witman G. B. Calcium control of waveform in isolated flagellar axonemes of Chlamydomonas. J Cell Biol. 1980 Aug;86(2):446–455. doi: 10.1083/jcb.86.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. J., Hayes A. Effect of extraction time on ability of calmodulin to activate 30S and 14S dynein ATPases. J Cell Biochem. 1984;24(4):373–384. doi: 10.1002/jcb.240240407. [DOI] [PubMed] [Google Scholar]
- Blum J. J., Hayes A., Jamieson G. A., Jr, Vanaman T. C. Calmodulin confers calcium sensitivity on ciliary dynein ATPase. J Cell Biol. 1980 Nov;87(2 Pt 1):386–397. doi: 10.1083/jcb.87.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. J., Hayes A. Specific anion effects on ATPase activity, calmodulin sensitivity, and solubilization of dynein ATPases. J Cell Biochem. 1984;25(4):197–212. doi: 10.1002/jcb.240250403. [DOI] [PubMed] [Google Scholar]
- Blumenthal D. K., Takio K., Edelman A. M., Charbonneau H., Titani K., Walsh K. A., Krebs E. G. Identification of the calmodulin-binding domain of skeletal muscle myosin light chain kinase. Proc Natl Acad Sci U S A. 1985 May;82(10):3187–3191. doi: 10.1073/pnas.82.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenthal D. K., Takio K., Hansen R. S., Krebs E. G. Dephosphorylation of cAMP-dependent protein kinase regulatory subunit (type II) by calmodulin-dependent protein phosphatase. Determinants of substrate specificity. J Biol Chem. 1986 Jun 25;261(18):8140–8145. [PubMed] [Google Scholar]
- Brokaw C. J. A lithium-sensitive regulator of sperm flagellar oscillation is activated by cAMP-dependent phosphorylation. J Cell Biol. 1987 Oct;105(4):1789–1798. doi: 10.1083/jcb.105.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J., Josslin R., Bobrow L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun. 1974 Jun 4;58(3):795–800. doi: 10.1016/s0006-291x(74)80487-0. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Nagayama S. M. Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin. J Cell Biol. 1985 Jun;100(6):1875–1883. doi: 10.1083/jcb.100.6.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapeau C., Gagnon C. Nitrocellulose and polyvinyl coatings prevent sperm adhesion to glass without affecting the motility of intact and demembranated human spermatozoa. J Androl. 1987 Jan-Feb;8(1):34–40. doi: 10.1002/j.1939-4640.1987.tb02416.x. [DOI] [PubMed] [Google Scholar]
- Cohen P. The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature. 1982 Apr 15;296(5858):613–620. doi: 10.1038/296613a0. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H. Intermittent swimming in live sea urchin sperm. J Cell Biol. 1980 Jan;84(1):1–12. doi: 10.1083/jcb.84.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R. Sliding and bending in sea urchin sperm flagella. Symp Soc Exp Biol. 1982;35:225–287. [PubMed] [Google Scholar]
- Gitelman S. E., Witman G. B. Purification of calmodulin from Chlamydomonas: calmodulin occurs in cell bodies and flagella. J Cell Biol. 1980 Dec;87(3 Pt 1):764–770. doi: 10.1083/jcb.87.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein D. A. Calculation of the concentrations of free cations and cation-ligand complexes in solutions containing multiple divalent cations and ligands. Biophys J. 1979 May;26(2):235–242. doi: 10.1016/S0006-3495(79)85247-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerriero V., Jr, Rowley D. R., Means A. R. Production and characterization of an antibody to myosin light chain kinase and intracellular localization of the enzyme. Cell. 1981 Dec;27(3 Pt 2):449–458. doi: 10.1016/0092-8674(81)90386-x. [DOI] [PubMed] [Google Scholar]
- Hyams J. S., Borisy G. G. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci. 1978 Oct;33:235–253. doi: 10.1242/jcs.33.1.235. [DOI] [PubMed] [Google Scholar]
- Klee C. B., Krinks M. H., Manalan A. S., Cohen P., Stewart A. A. Isolation and characterization of bovine brain calcineurin: a calmodulin-stimulated protein phosphatase. Methods Enzymol. 1983;102:227–244. doi: 10.1016/s0076-6879(83)02024-8. [DOI] [PubMed] [Google Scholar]
- Klumpp S., Steiner A. L., Schultz J. E. Immunocytochemical localization of cyclic GMP, cGMP-dependent protein kinase, calmodulin and calcineurin in Paramecium tetraurelia. Eur J Cell Biol. 1983 Nov;32(1):164–170. [PubMed] [Google Scholar]
- Lewis R. M., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium tetraurelia VI. Endogenous protein substrates for in vitro and in vivo phosphorylation in cilia and ciliary membranes. J Cell Biol. 1981 Oct;91(1):167–174. doi: 10.1083/jcb.91.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lewis R. M., Nelson D. L. Biochemical studies of the excitable membrane of Paramecium. IV. Protein kinase activities of cilia and ciliary membrane. Biochim Biophys Acta. 1980 Oct;615(2):341–353. doi: 10.1016/0005-2744(80)90501-x. [DOI] [PubMed] [Google Scholar]
- Mack S. O., Wolf D. P., Tash J. S. Quantitation of specific parameters of motility in large numbers of human sperm by digital image processing. Biol Reprod. 1988 Mar;38(2):270–281. doi: 10.1095/biolreprod38.2.270. [DOI] [PubMed] [Google Scholar]
- Manalan A. S., Klee C. B. Activation of calcineurin by limited proteolysis. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4291–4295. doi: 10.1073/pnas.80.14.4291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mariash C. N., Seelig S., Oppenheimer J. H. A rapid, inexpensive, quantitative technique for the analysis of two-dimensional electrophoretograms. Anal Biochem. 1982 Apr;121(2):388–394. doi: 10.1016/0003-2697(82)90498-5. [DOI] [PubMed] [Google Scholar]
- Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
- Pallen C. J., Wang J. H. Calmodulin-stimulated dephosphorylation of p-nitrophenyl phosphate and free phosphotyrosine by calcineurin. J Biol Chem. 1983 Jul 25;258(14):8550–8553. [PubMed] [Google Scholar]
- Piperno G., Luck D. J. Inner arm dyneins from flagella of Chlamydomonas reinhardtii. Cell. 1981 Dec;27(2 Pt 1):331–340. doi: 10.1016/0092-8674(81)90416-5. [DOI] [PubMed] [Google Scholar]
- Piperno G., Luck D. J. Outer and inner arm dyneins from flagella of Chlamydomonas reinhardtii. Prog Clin Biol Res. 1982;80:95–99. doi: 10.1002/cm.970020719. [DOI] [PubMed] [Google Scholar]
- Singer R., Barnet M., Allalouf D., Schwartzman S., Sagiv M., Landau B., Segenreich E., Servadio C. Some properties of acid and alkaline phosphatase in seminal fluid and isolated sperm. Arch Androl. 1980 Sep;5(2):195–199. doi: 10.3109/01485018008986315. [DOI] [PubMed] [Google Scholar]
- Srivastava P. N., Brewer J. M., White R. A., Jr Hydrolysis of p-nitrophenylphosphorylcholine by alkaline phosphatase and phospholipase C from rabbit sperm-acrosome. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1120–1125. doi: 10.1016/0006-291x(82)92116-7. [DOI] [PubMed] [Google Scholar]
- Swarup G., Garbers D. L. Phosphoprotein phosphatase activity of sea urchin spermatozoa. Biol Reprod. 1982 Jun;26(5):953–960. doi: 10.1095/biolreprod26.5.953. [DOI] [PubMed] [Google Scholar]
- Takahashi D., Murofushi H., Ishiguro K., Ikeda J., Sakai H. Phosphoprotein phosphatase inhibits flagellar movement of Triton models of sea urchin spermatozoa. Cell Struct Funct. 1985 Dec;10(4):327–337. doi: 10.1247/csf.10.327. [DOI] [PubMed] [Google Scholar]
- Tang F. Y., Hoskins D. D. Phosphoprotein phosphatase of bovine epididymal spermatozoa. Biochem Biophys Res Commun. 1975 Jan 20;62(2):328–335. doi: 10.1016/s0006-291x(75)80142-2. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Hidaka H., Means A. R. Axokinin phosphorylation by cAMP-dependent protein kinase is sufficient for activation of sperm flagellar motility. J Cell Biol. 1986 Aug;103(2):649–655. doi: 10.1083/jcb.103.2.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tash J. S., Kakar S. S., Means A. R. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin. Cell. 1984 Sep;38(2):551–559. doi: 10.1016/0092-8674(84)90509-9. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod. 1982 May;26(4):745–763. doi: 10.1095/biolreprod26.4.745. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward G. E., Garbers D. L., Vacquier V. D. Effects of extracellular egg factors on sperm guanylate cyclase. Science. 1985 Feb 15;227(4688):768–770. doi: 10.1126/science.2857502. [DOI] [PubMed] [Google Scholar]
