Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 May 1;106(5):1593–1605. doi: 10.1083/jcb.106.5.1593

Organization of microtubules in centrosome-free cytoplasm

PMCID: PMC2115052  PMID: 3286659

Abstract

Many different cell types possess microtubule patterns which appear to be polarized and oriented, in part, by cytoplasmic factors not directly associated with a centrosome. Recently, we demonstrated that cytoplasmic extensions ("arms") of teleost melanophores will reorganize their microtubule population outward from their centers after surgical isolation (McNiven, M. A., M. Wang, and K. R. Porter. 1984. Cell. 37:753-765). In the study reported here, we examine microtubule dynamics within the centrosome-free fragments and find that, after severing, microtubule reorganization is initiated at the proximal (cut) end of an arm and migrates distally with the aggregated pigment mass until it becomes permanently positioned at the middle of the arm. Computer-aided image analysis demonstrates that this middle position is located at the arm centroid, implicating the action of a cytoplasmic gel in this process. Morphological studies of arms devoid of pigment reveal that microtubules do not emanate from a single site or structure within the centroid area, but from a more generalized region. Taken together, these findings suggest that factors distributed throughout cytoplasm participate in microtubule assembly and organization.

Full Text

The Full Text of this article is available as a PDF (5.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baas P. W., Heidemann S. R. Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites. J Cell Biol. 1986 Sep;103(3):917–927. doi: 10.1083/jcb.103.3.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baas P. W., White L. A., Heidemann S. R. Microtubule polarity reversal accompanies regrowth of amputated neurites. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5272–5276. doi: 10.1073/pnas.84.15.5272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bajer A. S., Molè-Bajer J. Reorganization of microtubules in endosperm cells and cell fragments of the higher plant Haemanthus in vivo. J Cell Biol. 1986 Jan;102(1):263–281. doi: 10.1083/jcb.102.1.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Black M. M., Lasek R. J. Slow components of axonal transport: two cytoskeletal networks. J Cell Biol. 1980 Aug;86(2):616–623. doi: 10.1083/jcb.86.2.616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bray D., Bunge M. B. Serial analysis of microtubules in cultured rat sensory axons. J Neurocytol. 1981 Aug;10(4):589–605. doi: 10.1007/BF01262592. [DOI] [PubMed] [Google Scholar]
  6. Bray D. Mechanical tension produced by nerve cells in tissue culture. J Cell Sci. 1979 Jun;37:391–410. doi: 10.1242/jcs.37.1.391. [DOI] [PubMed] [Google Scholar]
  7. Buckley I. K., Porter K. R. Electron microscopy of critical point dried whole cultured cells. J Microsc. 1975 Jul;104(2):107–120. doi: 10.1111/j.1365-2818.1975.tb04010.x. [DOI] [PubMed] [Google Scholar]
  8. Byers H. R., Fujiwara K., Porter K. R. Visualization of microtubules of cells in situ by indirect immunofluorescence. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6657–6661. doi: 10.1073/pnas.77.11.6657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chalfie M., Thomson J. N. Organization of neuronal microtubules in the nematode Caenorhabditis elegans. J Cell Biol. 1979 Jul;82(1):278–289. doi: 10.1083/jcb.82.1.278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Euteneuer U., McIntosh J. R. Polarity of some motility-related microtubules. Proc Natl Acad Sci U S A. 1981 Jan;78(1):372–376. doi: 10.1073/pnas.78.1.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hays T. S., Wise D., Salmon E. D. Traction force on a kinetochore at metaphase acts as a linear function of kinetochore fiber length. J Cell Biol. 1982 May;93(2):374–389. doi: 10.1083/jcb.93.2.374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Heidemann S. R., Hamborg M. A., Thomas S. J., Song B., Lindley S., Chu D. Spatial organization of axonal microtubules. J Cell Biol. 1984 Oct;99(4 Pt 1):1289–1295. doi: 10.1083/jcb.99.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heidemann S. R., McIntosh J. R. Visualization of the structural polarity of microtubules. Nature. 1980 Jul 31;286(5772):517–519. doi: 10.1038/286517a0. [DOI] [PubMed] [Google Scholar]
  15. Hoffman P. N., Lasek R. J. The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J Cell Biol. 1975 Aug;66(2):351–366. doi: 10.1083/jcb.66.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. McNiven M. A., Porter K. R. Microtubule polarity confers direction to pigment transport in chromatophores. J Cell Biol. 1986 Oct;103(4):1547–1555. doi: 10.1083/jcb.103.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McNiven M. A., Wang M., Porter K. R. Microtubule polarity and the direction of pigment transport reverse simultaneously in surgically severed melanophore arms. Cell. 1984 Jul;37(3):753–765. doi: 10.1016/0092-8674(84)90411-2. [DOI] [PubMed] [Google Scholar]
  18. Miller M., Solomon F. Kinetics and intermediates of marginal band reformation: evidence for peripheral determinants of microtubule organization. J Cell Biol. 1984 Jul;99(1 Pt 2):70s–75s. doi: 10.1083/jcb.99.1.70s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  20. Murray J. M. Disassembly and reconstitution of a membrane-microtubule complex. J Cell Biol. 1984 Apr;98(4):1481–1487. doi: 10.1083/jcb.98.4.1481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Murray J. M. Three-dimensional structure of a membrane-microtubule complex. J Cell Biol. 1984 Jan;98(1):283–295. doi: 10.1083/jcb.98.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Nadelhaft I. Microtubule densities and total numbers in selected axons of the crayfish abdominal nerve cord. J Neurocytol. 1974 Mar;3(1):73–86. doi: 10.1007/BF01111933. [DOI] [PubMed] [Google Scholar]
  23. Sasaki S., Stevens J. K., Bodick N. Serial reconstruction of microtubular arrays within dendrites of the cat retinal ganglion cell: the cytoskeleton of a vertebrate dendrite. Brain Res. 1983 Jan 24;259(2):193–206. doi: 10.1016/0006-8993(83)91250-7. [DOI] [PubMed] [Google Scholar]
  24. Schliwa M. Microtubular apparates of melanophores. Three-dimensional organization. J Cell Biol. 1978 Mar;76(3):605–614. doi: 10.1083/jcb.76.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Swan J. A., Solomon F. Reformation of the marginal band of avian erythrocytes in vitro using calf-brain tubulin: peripheral determinants of microtubule form. J Cell Biol. 1984 Dec;99(6):2108–2113. doi: 10.1083/jcb.99.6.2108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zenker W., Hohberg E. A-alpha-nerve-fiber: number of neurotubules in the stem fibre and in the terminal branches. J Neurocytol. 1973 Jun;2(2):143–148. doi: 10.1007/BF01474716. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES