Abstract
Electron microscopy of directly frozen giant cells of characean algae shows a continuous, tridimensional network of anastomosing tubes and cisternae of rough endoplasmic reticulum which pervade the streaming region of their cytoplasm. Portions of this endoplasmic reticulum contact the parallel bundles of actin filaments at the interface with the stationary cortical cytoplasm. Mitochondria, glycosomes, and other small cytoplasmic organelles enmeshed in the endoplasmic reticulum network display Brownian motion while streaming. The binding and sliding of endoplasmic reticulum membranes along actin cables can also be directly visualized after the cytoplasm of these cells is dissociated in a buffer containing ATP. The shear forces produced at the interface with the dissociated actin cables move large aggregates of endoplasmic reticulum and other organelles. The combination of fast- freezing electron microscopy and video microscopy of living cells and dissociated cytoplasm demonstrates that the cytoplasmic streaming depends on endoplasmic reticulum membranes sliding along the stationary actin cables. Thus, the continuous network of endoplasmic reticulum provides a means of exerting motive forces on cytoplasm deep inside the cell distant from the cortical actin cables where the motive force is generated.
Full Text
The Full Text of this article is available as a PDF (4.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. J., Pollard T. D. Propulsion of organelles isolated from Acanthamoeba along actin filaments by myosin-I. Nature. 1986 Aug 21;322(6081):754–756. doi: 10.1038/322754a0. [DOI] [PubMed] [Google Scholar]
- Allen N. S. Endoplasmic filaments generate the motive force for rotational streaming in Nitella. J Cell Biol. 1974 Oct;63(1):270–287. doi: 10.1083/jcb.63.1.270. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradley M. O. Microfilaments and cytoplasmic streaming: inhibition of streaming with cytochalasin. J Cell Sci. 1973 Jan;12(1):327–343. doi: 10.1242/jcs.12.1.327. [DOI] [PubMed] [Google Scholar]
- Bridgman P. C., Reese T. S. The structure of cytoplasm in directly frozen cultured cells. I. Filamentous meshworks and the cytoplasmic ground substance. J Cell Biol. 1984 Nov;99(5):1655–1668. doi: 10.1083/jcb.99.5.1655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Giddings T. H., Jr, Staehelin L. A. Ribosome binding sites visualized on freeze-fractured membranes of the rough endoplasmic reticulum. J Cell Biol. 1980 Apr;85(1):147–152. doi: 10.1083/jcb.85.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kachar B., Bridgman P. C., Reese T. S. Dynamic shape changes of cytoplasmic organelles translocating along microtubules. J Cell Biol. 1987 Sep;105(3):1267–1271. doi: 10.1083/jcb.105.3.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kachar B. Direct visualization of organelle movement along actin filaments dissociated from characean algae. Science. 1985 Mar 15;227(4692):1355–1357. doi: 10.1126/science.4038817. [DOI] [PubMed] [Google Scholar]
- Kersey Y. M., Hepler P. K., Palevitz B. A., Wessells N. K. Polarity of actin filaments in Characean algae. Proc Natl Acad Sci U S A. 1976 Jan;73(1):165–167. doi: 10.1073/pnas.73.1.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagai R., Hayama T. Ultrastructure of the endoplasmic factor responsible for cytoplasmic streaming in Chara internodal cells. J Cell Sci. 1979 Apr;36:121–136. doi: 10.1242/jcs.36.1.121. [DOI] [PubMed] [Google Scholar]
- Nagai R., Rebhun L. I. Cytoplasmic microfilaments in streaming Nitella cells. J Ultrastruct Res. 1966 Mar;14(5):571–589. doi: 10.1016/s0022-5320(66)80083-7. [DOI] [PubMed] [Google Scholar]
- Nothnagel E. A., Barak L. S., Sanger J. W., Webb W. W. Fluorescence studies on modes of cytochalasin B and phallotoxin action on cytoplasmic streaming in Chara. J Cell Biol. 1981 Feb;88(2):364–372. doi: 10.1083/jcb.88.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nothnagel E. A., Webb W. W. Hydrodynamic models of viscous coupling between motile myosin and endoplasm in characean algae. J Cell Biol. 1982 Aug;94(2):444–454. doi: 10.1083/jcb.94.2.444. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheetz M. P., Chasan R., Spudich J. A. ATP-dependent movement of myosin in vitro: characterization of a quantitative assay. J Cell Biol. 1984 Nov;99(5):1867–1871. doi: 10.1083/jcb.99.5.1867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terasaki M., Chen L. B., Fujiwara K. Microtubules and the endoplasmic reticulum are highly interdependent structures. J Cell Biol. 1986 Oct;103(4):1557–1568. doi: 10.1083/jcb.103.4.1557. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson R. E. Cytoplasmic streaming in Chara: a cell model activated by ATP and inhibited by cytochalasin B. J Cell Sci. 1975 May;17(3):655–668. doi: 10.1242/jcs.17.3.655. [DOI] [PubMed] [Google Scholar]
- Williamson R. E. Filaments associated with the endoplasmic reticulum in the streaming cytoplasm of Chara corallina. Eur J Cell Biol. 1979 Dec;20(2):177–183. [PubMed] [Google Scholar]
- Yano M. Observation of steady streamings in a solution of Mg-ATP and acto-heavy meromyosin from rabbit skeletal muscle. J Biochem. 1978 Apr;83(4):1203–1204. doi: 10.1093/oxfordjournals.jbchem.a132012. [DOI] [PubMed] [Google Scholar]