Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 May 1;106(5):1693–1702. doi: 10.1083/jcb.106.5.1693

The control of chick myoblast fusion by ion channels operated by prostaglandins and acetylcholine

PMCID: PMC2115067  PMID: 2453519

Abstract

Chick myoblast fusion in culture was investigated using prostanoid synthesis inhibitors to delay spontaneous fusion. During this delay myoblast fusion could be induced by prostaglandin E1 (PGE1), by raising extracellular potassium and by addition of carbachol. Carbachol-induced fusion, but not PGE-induced fusion, was prevented by the acetylcholine receptor blocker alpha-bungarotoxin. Fusion induced by any of these agents was prevented by the Ca channel blockers lanthanum and D600. The threshold for potassium-induced fusion was 7-8 mM; maximal fusion occurred at 16-20 mM. Low extracellular potassium inhibited spontaneous fusion. Intracellular potassium in fusion competent myoblasts was 101 m- moles/l cell. Calcium flux measurements demonstrated that high potassium increased calcium permeability in fusion-competent myoblasts. A 30-s exposure to high potassium or PGE1 was sufficient to initiate myoblast fusion. Anion-exchange inhibitors (SITS and DIDS) delayed spontaneous myoblast fusion and blocked fusion induced by PGE1 but not carbachol. Blocking the acetylcholine receptor shifted the dose- response relation for PGE-induced fusion to higher concentrations. PGE1- induced fusion required chloride ions; carbachol-induced fusion required sodium ions. Provided calcium channels were available, potassium always induced fusion. We conclude that myoblasts possess at least three, independent pathways, each of which can initiate myoblast fusion and that the PGE-activated pathway and the acetylcholine receptor-activated pathway act synergistically. We suggest that fusion competent myoblasts have a high resting membrane potential and that fusion is controlled by depolarization initiated directly (potassium), by an increase in permeability to chloride ions (PGE), or by activation of the acetylcholine receptor (carbachol); depolarization triggers a rise in calcium permeability. The consequent increase in intracellular calcium initiates myoblast fusion.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamo S., Zani B., Siracusa G., Molinaro M. Expression of differentiative traits in the absence of cell fusion during myogenesis in culture. Cell Differ. 1976 Apr;5(1):53–67. doi: 10.1016/0045-6039(76)90015-4. [DOI] [PubMed] [Google Scholar]
  2. Baker P. F., Rink T. J. Catecholamine release from bovine adrenal medulla in response to maintained depolarization. J Physiol. 1975 Dec;253(2):593–620. doi: 10.1113/jphysiol.1975.sp011209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Betz W. J., Caldwell J. H., Harris G. L. Effect of denervation on a steady electric current generated at the end-plate region of rat skeletal muscle. J Physiol. 1986 Apr;373:97–114. doi: 10.1113/jphysiol.1986.sp016037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bevan S., Gray P. T., Ritchie J. M. A calcium-activated cation-selective channel in rat cultured Schwann cells. Proc R Soc Lond B Biol Sci. 1984 Sep 22;222(1228):349–355. doi: 10.1098/rspb.1984.0068. [DOI] [PubMed] [Google Scholar]
  5. Bolton T. B., Vaughan-Jones R. D. Continuous direct measurement of intracellular chloride and pH in frog skeletal muscle. J Physiol. 1977 Sep;270(3):801–833. doi: 10.1113/jphysiol.1977.sp011983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. David J. D., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: interactions of prostaglandin E1, adenosine 3':5' monophosphate, and calcium influx. Dev Biol. 1981 Mar;82(2):308–316. doi: 10.1016/0012-1606(81)90454-1. [DOI] [PubMed] [Google Scholar]
  7. David J. D., See W. M., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol. 1981 Mar;82(2):297–307. doi: 10.1016/0012-1606(81)90453-x. [DOI] [PubMed] [Google Scholar]
  8. Entwistle A., Curtis D. H., Zalin R. J. Myoblast fusion is regulated by a prostanoid of the one series independently of a rise in cyclic AMP. J Cell Biol. 1986 Sep;103(3):857–866. doi: 10.1083/jcb.103.3.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Entwistle A., Zalin R. J., Warner A. E., Bevan S. A role for acetylcholine receptors in the fusion of chick myoblasts. J Cell Biol. 1988 May;106(5):1703–1712. doi: 10.1083/jcb.106.5.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gardner P., Ogden D. C., Colquhoun D. Conductances of single ion channels opened by nicotinic agonists are indistinguishable. Nature. 1984 May 10;309(5964):160–162. doi: 10.1038/309160a0. [DOI] [PubMed] [Google Scholar]
  11. Ginesi L. M., Munday K. A., Noble A. R. Secretion control for active and inactive renin: effects of calcium and potassium on rabbit kidney cortex slices. J Physiol. 1983 Nov;344:453–463. doi: 10.1113/jphysiol.1983.sp014951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goldberg G., Mochly-Rosen D., Fuchs S., Lass Y. Monoclonal antibodies modify acetylcholine-induced ionic channel properties in cultured chick myoballs. J Membr Biol. 1983;76(2):123–128. doi: 10.1007/BF02000612. [DOI] [PubMed] [Google Scholar]
  13. Gray P. T., Ritchie J. M. A voltage-gated chloride conductance in rat cultured astrocytes. Proc R Soc Lond B Biol Sci. 1986 Aug 22;228(1252):267–288. doi: 10.1098/rspb.1986.0055. [DOI] [PubMed] [Google Scholar]
  14. HODGKIN A. L., HOROWICZ P. The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol. 1959 Oct;148:127–160. doi: 10.1113/jphysiol.1959.sp006278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hume R. I., Honig M. G. Excitatory action of ATP on embryonic chick muscle. J Neurosci. 1986 Mar;6(3):681–690. doi: 10.1523/JNEUROSCI.06-03-00681.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kidokoro Y. Developmental changes of membrane electrical properties in a rat skeletal muscle cell line. J Physiol. 1975 Jan;244(1):129–143. doi: 10.1113/jphysiol.1975.sp010787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knauf P. A., Rothstein A. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell. J Gen Physiol. 1971 Aug;58(2):190–210. doi: 10.1085/jgp.58.2.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kolb H. A., Wakelam M. J. Transmitter-like action of ATP on patched membranes of cultured myoblasts and myotubes. Nature. 1983 Jun 16;303(5918):621–623. doi: 10.1038/303621a0. [DOI] [PubMed] [Google Scholar]
  19. Maddrell S. H., Gee J. D. Potassium-induced release of the diuretic hormones of Rhodnius prolixus and Glossina austeni: Ca dependence, time course and localization of neurohaemal areas. J Exp Biol. 1974 Aug;61(1):155–171. doi: 10.1242/jeb.61.1.155. [DOI] [PubMed] [Google Scholar]
  20. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  21. Okazaki K., Holtzer H. An analysis of myogenesis in vitro using fluorescein-labeled antimyosin. J Histochem Cytochem. 1965 Nov-Dec;13(8):726–739. doi: 10.1177/13.8.726. [DOI] [PubMed] [Google Scholar]
  22. Patrick J., Stallcup W. B. Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin-binding component on sympathetic neurons. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4689–4692. doi: 10.1073/pnas.74.10.4689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schudt C., van der Bosch J., Pette D. Inhibition of muscle cell fusion in vitro by Mg2+ and K+ ions. FEBS Lett. 1973 Jun 1;32(2):296–298. doi: 10.1016/0014-5793(73)80857-9. [DOI] [PubMed] [Google Scholar]
  24. Schwarze W., Kolb H. A. Voltage-dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes. Pflugers Arch. 1984 Nov;402(3):281–291. doi: 10.1007/BF00585511. [DOI] [PubMed] [Google Scholar]
  25. Shainberg A., Yagil G., Yaffe D. Control of myogenesis in vitro by Ca 2 + concentration in nutritional medium. Exp Cell Res. 1969 Nov;58(1):163–167. doi: 10.1016/0014-4827(69)90127-x. [DOI] [PubMed] [Google Scholar]
  26. Turner T. J., Goldin S. M. Calcium channels in rat brain synaptosomes: identification and pharmacological characterization. High affinity blockade by organic Ca2+ channel blockers. J Neurosci. 1985 Mar;5(3):841–849. doi: 10.1523/JNEUROSCI.05-03-00841.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wakelam M. J. The fusion of myoblasts. Biochem J. 1985 May 15;228(1):1–12. doi: 10.1042/bj2280001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Winne D. Formal kinetics of water and solute absorption with regard to intestinal blood flow. J Theor Biol. 1970 Apr;27(1):1–18. doi: 10.1016/0022-5193(70)90126-8. [DOI] [PubMed] [Google Scholar]
  29. Woodbury J. W., Miles P. R. Anion conductance of frog muscle membranes: one channel, two kinds of pH dependence. J Gen Physiol. 1973 Sep;62(3):324–353. doi: 10.1085/jgp.62.3.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zalin R. J. Prostaglandins and myoblast fusion. Dev Biol. 1977 Sep;59(2):241–248. doi: 10.1016/0012-1606(77)90258-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES