Abstract
Isolated granular haemocytes (blood cells) from the crayfish Pacifastacus leniusculus attached and spread in vitro on coverslips coated with a lysate of crayfish haemocytes. No cell adhesion activity was detected in crayfish plasma. The cell adhesion activity was only present in haemocyte lysates in which the prophenoloxidase (proPO) activating system (Soderhall and Smith, 1986a, b) had been activated; either by lipopolysaccharide (LPS), the beta-1,3-glucan laminarin, or by preparing the lysate in 5 mM Ca2+. Both lysates of granular or of semigranular haemocytes could mediate adhesion. After A23187-induced exocytosis of the granular cells, cell adhesion activity could be generated in the secreted material if it was incubated with laminarin. The factor responsible for cell adhesion was isolated from an active haemocyte lysate and purified by ammonium sulfate precipitation, cation exchange chromatography and Con A-Sepharose; it had a molecular mass of approximately 76 kD on an SDS-polyacrylamide gel. An antibody to this 76-kD band inhibited cell adhesion. Ca2+ was necessary in the medium for the cells to adhere to the adhesion factor. With cyanide or azide, the cells attached but failed to spread. It is suggested that in vivo the cell adhesion factor is stored in the secretory granules of the semigranular and the granular cells in a putative inactive pro-form, which can be released during exocytosis and, in the presence of beta- 1,3-glucans or LPS, be activated outside the cells to mediate cell attachment and spreading, processes of essential importance in arthropod host defense.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong P. B. Adhesion and spreading of Limulus blood cells on artificial surfaces. J Cell Sci. 1980 Aug;44:243–262. doi: 10.1242/jcs.44.1.243. [DOI] [PubMed] [Google Scholar]
- Ashida M., Ishizaki Y., Iwahana H. Activation of pro-phenoloxidase by bacterial cell walls or beta-1,3-glucans in plasma of the silkworm, Bombyx mori. Biochem Biophys Res Commun. 1983 Jun 15;113(2):562–568. doi: 10.1016/0006-291x(83)91762-x. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- DeSimone D. W., Spiegel E., Spiegel M. The biochemical identification of fibronectin in the sea urchin embryo. Biochem Biophys Res Commun. 1985 Nov 27;133(1):183–188. doi: 10.1016/0006-291x(85)91858-3. [DOI] [PubMed] [Google Scholar]
- Fehr J., Huber A. Complement-induced granulocyte adhesion and aggregation are mediated by different factors: evidence for non-equivalence of the two cell functions. Immunology. 1984 Nov;53(3):583–593. [PMC free article] [PubMed] [Google Scholar]
- Goldstein I. M., Perez H. D. Biologically active peptides derived from the fifth component of complement. Prog Hemost Thromb. 1980;5:41–79. [PubMed] [Google Scholar]
- Grinnell F. Cellular adhesiveness and extracellular substrata. Int Rev Cytol. 1978;53:65–144. doi: 10.1016/s0074-7696(08)62241-x. [DOI] [PubMed] [Google Scholar]
- Grinnell F., Feld M. K. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem. 1982 May 10;257(9):4888–4893. [PubMed] [Google Scholar]
- Grinnell F. The serum dependence of baby hamster kidney cell attachment to a substratum. Exp Cell Res. 1976 Feb;97(2):265–274. doi: 10.1016/0014-4827(76)90616-9. [DOI] [PubMed] [Google Scholar]
- Hancock K., Tsang V. C. India ink staining of proteins on nitrocellulose paper. Anal Biochem. 1983 Aug;133(1):157–162. doi: 10.1016/0003-2697(83)90237-3. [DOI] [PubMed] [Google Scholar]
- Hayman E. G., Pierschbacher M. D., Ohgren Y., Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4003–4007. doi: 10.1073/pnas.80.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hayman E. G., Pierschbacher M. D., Suzuki S., Ruoslahti E. Vitronectin--a major cell attachment-promoting protein in fetal bovine serum. Exp Cell Res. 1985 Oct;160(2):245–258. doi: 10.1016/0014-4827(85)90173-9. [DOI] [PubMed] [Google Scholar]
- Hök M., Rubin K., Oldberg A., Obrink B., Vaheri A. Cold-insoluble globulin mediates the adhesion of rat liver cells to plastic Petri dishes. Biochem Biophys Res Commun. 1977 Dec 7;79(3):726–733. doi: 10.1016/0006-291x(77)91172-x. [DOI] [PubMed] [Google Scholar]
- Iwata M., Nakano E. Characterization of sea-urchin fibronectin. Biochem J. 1983 Oct 1;215(1):205–208. doi: 10.1042/bj2150205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katow H., Hayashi M. Role of fibronectin in primary mesenchyme cell migration in the sea urchin. J Cell Biol. 1985 Oct;101(4):1487–1491. doi: 10.1083/jcb.101.4.1487. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Katow H., Yamada K. M., Solursh M. Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo. Differentiation. 1982;22(2):120–124. doi: 10.1111/j.1432-0436.1982.tb01235.x. [DOI] [PubMed] [Google Scholar]
- Kenney D. M., Belamarich F. A., Shepro D. Aggregation of horseshoe crab (Limulus polyphemus) amebocytes and reversible inhibition of aggregation by EDTA. Biol Bull. 1972 Dec;143(3):548–567. doi: 10.2307/1540183. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
- Ratcliffe N. A., Gagen S. J. Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell. 1977;9(1):73–85. doi: 10.1016/0040-8166(77)90050-7. [DOI] [PubMed] [Google Scholar]
- Ratcliffe N. A., Leonard C., Rowley A. F. Prophenoloxidase activation: nonself recognition and cell cooperation in insect immunity. Science. 1984 Nov 2;226(4674):557–559. doi: 10.1126/science.226.4674.557. [DOI] [PubMed] [Google Scholar]
- Sakariassen K. S., Bolhuis P. A., Sixma J. J. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature. 1979 Jun 14;279(5714):636–638. doi: 10.1038/279636a0. [DOI] [PubMed] [Google Scholar]
- Smith D. E., Fisher P. A. Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J Cell Biol. 1984 Jul;99(1 Pt 1):20–28. doi: 10.1083/jcb.99.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith V. J., Söderhäll K. Induction of degranulation and lysis of haemocytes in the freshwater crayfish, Astacus astacus by components of the prophenoloxidase activating system in vitro. Cell Tissue Res. 1983;233(2):295–303. doi: 10.1007/BF00238297. [DOI] [PubMed] [Google Scholar]
- Spiegel E., Burger M. M., Spiegel M. Fibronectin and laminin in the extracellular matrix and basement membrane of sea urchin embryos. Exp Cell Res. 1983 Mar;144(1):47–55. doi: 10.1016/0014-4827(83)90440-8. [DOI] [PubMed] [Google Scholar]
- Spiegel E., Burger M., Spiegel M. Fibronectin in the developing sea urchin embryo. J Cell Biol. 1980 Oct;87(1):309–313. doi: 10.1083/jcb.87.1.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Söderhäll K., Smith V. J. Separation of the haemocyte populations of Carcinus maenas and other marine decapods, and prophenoloxidase distribution. Dev Comp Immunol. 1983 Spring;7(2):229–239. doi: 10.1016/0145-305x(83)90004-6. [DOI] [PubMed] [Google Scholar]
- Söderhäll K., Vey A., Ramstedt M. Hemocyte lysate enhancement of fungal spore encapsulation by crayfish hemocytes. Dev Comp Immunol. 1984 Winter;8(1):23–29. doi: 10.1016/0145-305x(84)90006-5. [DOI] [PubMed] [Google Scholar]
- Takle G. B., Lackie A. M. Chemokinetic behaviour of insect haemocytes in vitro. J Cell Sci. 1986 Sep;85:85–94. doi: 10.1242/jcs.85.1.85. [DOI] [PubMed] [Google Scholar]
- Wessel G. M., Marchase R. B., McClay D. R. Ontogeny of the basal lamina in the sea urchin embryo. Dev Biol. 1984 May;103(1):235–245. doi: 10.1016/0012-1606(84)90025-3. [DOI] [PubMed] [Google Scholar]
- Yamada K. M., Olden K. Fibronectins--adhesive glycoproteins of cell surface and blood. Nature. 1978 Sep 21;275(5677):179–184. doi: 10.1038/275179a0. [DOI] [PubMed] [Google Scholar]
