Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 May 1;106(5):1427–1433. doi: 10.1083/jcb.106.5.1427

A cytochemical study of the transcriptional and translational regulation of nuclear transition protein 1 (TP1), a major chromosomal protein of mammalian spermatids

PMCID: PMC2115069  PMID: 3372585

Abstract

Immunocytochemical localization and in situ hybridization techniques were used to investigate the presence of spermatid nuclear transition protein 1 (TP1) and its mRNA during the various stages of spermatogenesis in the rat. A specific antiserum to TP1 was raised in a rabbit and used to show that TP1 is immunologically crossreactive among many mammals including humans. During spermatogenesis the protein appears in spermatids as they progress from step 12 to step 13, a period in which nuclear condensation is underway. The protein is lost during step 15. An asymmetric RNA probe generated from a TP1 cDNA clone identified TP1 mRNA in late round spermatids beginning in step 7. The message could no longer be detected in spermatids of step 15 or beyond. Thus, TP1 mRNA first appears well after meiosis in haploid cells but is not translated effectively for the several days required for these cells to progress to the stage of chromatin condensation. Message and then protein disappear as the spermatids enter step 15. In agreement with a companion biochemical study (Heidaran, M.A., and W.S. Kistler. J. Biol. Chem. 1987. 262:13309-13315), these results establish that translational control is involved in synthesis of this major spermatid nuclear protein. In addition, they suggest that TP1 plays a role in the completion but not the initiation of chromatin condensation in elongated spermatids.

Full Text

The Full Text of this article is available as a PDF (2.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balhorn R., Weston S., Thomas C., Wyrobek A. J. DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res. 1984 Feb;150(2):298–308. doi: 10.1016/0014-4827(84)90572-x. [DOI] [PubMed] [Google Scholar]
  2. Bellvé A. R., Anderson E., Hanley Bowdoin L. Synthesis and amino acid composition of basic proteins in mammalian sperm nuclei. Dev Biol. 1975 Dec;47(2):349–365. doi: 10.1016/0012-1606(75)90289-4. [DOI] [PubMed] [Google Scholar]
  3. Calvin H. I. Comparative analysis of the nuclear basic proteins in rat, human, guinea pig, mouse and rabbit spermatozoa. Biochim Biophys Acta. 1976 Jun 15;434(2):377–389. doi: 10.1016/0005-2795(76)90229-4. [DOI] [PubMed] [Google Scholar]
  4. Clermont Y. Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev. 1972 Jan;52(1):198–236. doi: 10.1152/physrev.1972.52.1.198. [DOI] [PubMed] [Google Scholar]
  5. Cole K. D., Kistler W. S. Nuclear transition protein 2 (TP2) of mammalian spermatids has a very basic carboxyl terminal domain. Biochem Biophys Res Commun. 1987 Aug 31;147(1):437–442. doi: 10.1016/s0006-291x(87)80140-7. [DOI] [PubMed] [Google Scholar]
  6. Cox K. H., DeLeon D. V., Angerer L. M., Angerer R. C. Detection of mrnas in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev Biol. 1984 Feb;101(2):485–502. doi: 10.1016/0012-1606(84)90162-3. [DOI] [PubMed] [Google Scholar]
  7. Dupressoir T., Sautière P., Lanneau M., Loir M. Isolation and characterization of the ram spermatidal nuclear proteins P1, 3 and T. Exp Cell Res. 1985 Nov;161(1):63–74. doi: 10.1016/0014-4827(85)90490-2. [DOI] [PubMed] [Google Scholar]
  8. Dym M., Fawcett D. W. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod. 1971 Apr;4(2):195–215. doi: 10.1093/biolreprod/4.2.195. [DOI] [PubMed] [Google Scholar]
  9. Elsevier S. M. Messenger RNA encoding basic chromosomal proteins of mouse testis. Dev Biol. 1982 Mar;90(1):1–12. doi: 10.1016/0012-1606(82)90205-6. [DOI] [PubMed] [Google Scholar]
  10. Geremia R., Boitani C., Conti M., Monesi V. RNA synthesis in spermatocytes and spermatids and preservation of meiotic RNA during spermiogenesis in the mouse. Cell Differ. 1977 Mar;5(5-6):343–355. doi: 10.1016/0045-6039(77)90072-0. [DOI] [PubMed] [Google Scholar]
  11. Gorski J., Morrison M. R., Merkel C. G., Lingrel J. B. Size heterogeneity of polyadenylate sequences in mouse globin messenger RNA. J Mol Biol. 1974 Jun 25;86(2):363–371. doi: 10.1016/0022-2836(74)90025-4. [DOI] [PubMed] [Google Scholar]
  12. Green I., Benacerraf B., Stone S. H. The effect of the amount of mycobacterial adjuvants on the immune response of strain 2, strain 13 and Hartley strain guinea pigs to DNP-PLL and DNP-GL. J Immunol. 1969 Sep;103(3):403–412. [PubMed] [Google Scholar]
  13. Green P. J., Pines O., Inouye M. The role of antisense RNA in gene regulation. Annu Rev Biochem. 1986;55:569–597. doi: 10.1146/annurev.bi.55.070186.003033. [DOI] [PubMed] [Google Scholar]
  14. Grimes S. R., Jr, Meistrich M. L., Platz R. D., Hnilica L. S. Nuclear protein transitions in rat testis spermatids. Exp Cell Res. 1977 Nov;110(1):31–39. doi: 10.1016/0014-4827(77)90266-x. [DOI] [PubMed] [Google Scholar]
  15. Grimes S. R., Jr, Platz R. D., Meistrich M. L., Hnilica L. S. Partial characterization of a new basic nuclear protein from rat testis elongated spermatids. Biochem Biophys Res Commun. 1975 Nov 3;67(1):182–189. doi: 10.1016/0006-291x(75)90300-9. [DOI] [PubMed] [Google Scholar]
  16. Hayashi S., Gillam I. C., Delaney A. D., Tener G. M. Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiographs from hybridization with [125I]-labeled RNA. J Histochem Cytochem. 1978 Aug;26(8):677–679. doi: 10.1177/26.8.99471. [DOI] [PubMed] [Google Scholar]
  17. Heidaran M. A., Kistler W. S. Transcriptional and translational control of the message for transition protein 1, a major chromosomal protein of mammalian spermatids. J Biol Chem. 1987 Sep 25;262(27):13309–13315. [PubMed] [Google Scholar]
  18. Huckins C. Cell cycle properties of differentiating spermatogonia in adult Sprague-Dawley rats. Cell Tissue Kinet. 1971 Mar;4(2):139–154. doi: 10.1111/j.1365-2184.1971.tb01524.x. [DOI] [PubMed] [Google Scholar]
  19. Iatrou K., Dixon G. H. The distribution of poly(A)+ and poly(A)- protamine messenger RNA sequences in the developing trout testis. Cell. 1977 Mar;10(3):433–441. doi: 10.1016/0092-8674(77)90030-7. [DOI] [PubMed] [Google Scholar]
  20. Kandala J. C., Kistler M. K., Lawther R. P., Kistler W. S. Characterization of a genomic clone for rat seminal vesicle secretory protein IV. Nucleic Acids Res. 1983 May 25;11(10):3169–3186. doi: 10.1093/nar/11.10.3169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kierszenbaum A. L., Tres L. L. Structural and transcriptional features of the mouse spermatid genome. J Cell Biol. 1975 May;65(2):258–270. doi: 10.1083/jcb.65.2.258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kistler W. S., Geroch M. E., Williams-Ashman H. G. A highly basic small protein associated with spermatogenesis in the human testis. Invest Urol. 1975 Mar;12(5):346–350. [PubMed] [Google Scholar]
  23. Kistler W. S., Geroch M. E., Williams-Ashman H. G. Specific basic proteins from mammalian testes. Isolation and properties of small basic proteins from rat testes and epididymal spermatozoa. J Biol Chem. 1973 Jul 10;248(13):4532–4543. [PubMed] [Google Scholar]
  24. Kistler W. S., Noyes C., Hsu R., Heinrikson R. L. The amino acid sequence of a testis-specific basic protein that is associated with spermatogenesis. J Biol Chem. 1975 Mar 10;250(5):1847–1853. [PubMed] [Google Scholar]
  25. Kleene K. C., Distel R. J., Hecht N. B. Translational regulation and deadenylation of a protamine mRNA during spermiogenesis in the mouse. Dev Biol. 1984 Sep;105(1):71–79. doi: 10.1016/0012-1606(84)90262-8. [DOI] [PubMed] [Google Scholar]
  26. Kleene K. C., Flynn J. Translation of mouse testis poly(A)+ mRNAs for testis-specific protein, protamine 1, and the precursor for protamine 2. Dev Biol. 1987 Sep;123(1):125–135. doi: 10.1016/0012-1606(87)90434-9. [DOI] [PubMed] [Google Scholar]
  27. Lanneau M., Loir M. An electrophoretic investigation of mammalian spermatid-specific nuclear proteins. J Reprod Fertil. 1982 May;65(1):163–170. doi: 10.1530/jrf.0.0650163. [DOI] [PubMed] [Google Scholar]
  28. Loir M., Bouvier D., Fornells M., Lanneau M., Subirana J. A. Interactions of nuclear proteins with DNA, during sperm differentiation in the ram. Chromosoma. 1985;92(4):304–312. doi: 10.1007/BF00329814. [DOI] [PubMed] [Google Scholar]
  29. Loir M., Lanneau M. Transformation of ram spermatid chromatin. Exp Cell Res. 1978 Sep;115(2):231–243. doi: 10.1016/0014-4827(78)90277-x. [DOI] [PubMed] [Google Scholar]
  30. Marushige Y., Marushige K. Phosphorylation of sperm histone during spermiogenesis in mammals. Biochim Biophys Acta. 1978 May 23;518(3):440–449. doi: 10.1016/0005-2787(78)90162-4. [DOI] [PubMed] [Google Scholar]
  31. Mayer J. F., Jr, Chang T. S., Zirkin B. R. Spermatogenesis in the mouse 2. Amino acid incorporation into basic nucleoproteins of mouse spermatids and spermatozoa. Biol Reprod. 1981 Dec;25(5):1041–1051. doi: 10.1095/biolreprod25.5.1041. [DOI] [PubMed] [Google Scholar]
  32. Mayer J. F., Jr, Zirkin B. R. Spermatogenesis in the mouse. I. Autoradiographic studies of nuclear incorporation and loss of 3H-amino acids. J Cell Biol. 1979 May;81(2):403–410. doi: 10.1083/jcb.81.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meistrich M. L., Brock W. A., Grimes S. R., Platz R. D., Hnilica L. S. Nuclear protein transitions during spermatogenesis. Fed Proc. 1978 Sep;37(11):2522–2525. [PubMed] [Google Scholar]
  34. Monfoort C. H., Schiphof R., Roxijn T. H., Steyn-Parvè E. P. Amino acid composition and carboxyl-terminal structure of some basic chromosomal proteins of mammalian spermatozoa. Biochim Biophys Acta. 1973 Sep 21;322(1):173–177. doi: 10.1016/0005-2795(73)90189-x. [DOI] [PubMed] [Google Scholar]
  35. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  36. Platz R. D., Grimes S. R., Meistrich M. L., Hnilica L. S. Changes in nuclear proteins of rat testis cells separated by velocity sedimentation. J Biol Chem. 1975 Aug 10;250(15):5791–5800. [PubMed] [Google Scholar]
  37. Rajaniemi H., Karjalainen M., Veijola M., Ritanen-Kaivamo S., Kellokumpu S., Metsikkö K. Immunocytochemical localization of receptor human chorionic gonadotropin complexes in rat leydig cells. J Histochem Cytochem. 1981 Jul;29(7):813–816. doi: 10.1177/29.7.6267126. [DOI] [PubMed] [Google Scholar]
  38. Rodman T. C., Litwin S. D., Romani M., Vidali G. Life history of mouse sperm protein. Intratesticular stages. J Cell Biol. 1979 Mar;80(3):605–620. doi: 10.1083/jcb.80.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sheiness D., Darnell J. E. Polyadenylic acid segment in mRNA becomes shorter with age. Nat New Biol. 1973 Feb 28;241(113):265–268. doi: 10.1038/newbio241265a0. [DOI] [PubMed] [Google Scholar]
  40. Shima K., Sawazaki N., Tanaka R., Tarui S., Nishikawa M. Effect of an exposure to chloramine-T on the immunoreactivity of glucagon. Endocrinology. 1975 May;96(5):1254–1260. doi: 10.1210/endo-96-5-1254. [DOI] [PubMed] [Google Scholar]
  41. Sinclair G. D., Dixon G. H. Purification and characterization of cytoplasmic protamine messenger ribonucleoprotein particles from rainbow trout testis cells. Biochemistry. 1982 Apr 13;21(8):1869–1877. doi: 10.1021/bi00537a026. [DOI] [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Yelick P. C., Balhorn R., Johnson P. A., Corzett M., Mazrimas J. A., Kleene K. C., Hecht N. B. Mouse protamine 2 is synthesized as a precursor whereas mouse protamine 1 is not. Mol Cell Biol. 1987 Jun;7(6):2173–2179. doi: 10.1128/mcb.7.6.2173. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES