Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Mar 1;106(3):667–676. doi: 10.1083/jcb.106.3.667

Pericellular proteolysis by neutrophils in the presence of proteinase inhibitors: effects of substrate opsonization

PMCID: PMC2115080  PMID: 3279049

Abstract

Inflammatory cells are capable of degrading extracellular matrix macromolecules in vivo in the presence of proteinase inhibitors. We and others have hypothesized that such proteolysis is permitted in large part by mechanisms operative in the immediate pericellular environment, especially at zones of contact between inflammatory cells and insoluble matrix components. To further test this hypothesis in vitro, we have used a model system in which viable polymorphonuclear neutrophils (PMN) are allowed to contact a surface coated with proteinase-sensitive substrate, and in which PMN interaction with the surface can be modulated. We have evaluated proteolysis of the surface-bound protein in the presence and absence of proteinase inhibitors. Our results were: (a) In the presence (but not in the absence) of proteinase inhibitors, proteolysis was confined to sharply marginated zones subjacent to the cells; (b) opsonization of the surface enhanced spreading of the PMN, (c) opsonization diminished the effectiveness of alpha-1-proteinase inhibitor (alpha-1-PI) and alpha-2-macroglobulin as inhibitors of proteolysis of surface-bound protein; (d) anti-oxidants did not alter the effectiveness of alpha-1-PI in inhibiting proteolysis of opsonized substrate by PMN; and (e) PMN could restrict entry of alpha-1-PI into zones of contact with opsonized surfaces. We conclude that: (a) In the presence of proteinase inhibitors, PMN can express sharply marginated and exclusively pericellular proteolytic activity; (b) locally high proteinase concentrations and/or exclusion of proteinase inhibitors from pericellular microenvironments may be important mechanisms for pericellular matrix degradation by PMN; and (c) these observations may have general relevance to extracellular matrix remodeling by a variety of inflammatory and other cell types.

Full Text

The Full Text of this article is available as a PDF (3.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baggiolini M., Schnyder J., Bretz U., Dewald B., Ruch W. Cellular mechanisms of proteinase release from inflammatory cells and the degradation of extracellular proteins. Ciba Found Symp. 1979;(75):105–121. doi: 10.1002/9780470720585.ch7. [DOI] [PubMed] [Google Scholar]
  2. Banda M. J., Clark E. J., Werb Z. Regulation of alpha 1 proteinase inhibitor function by rabbit alveolar macrophages. Evidence for proteolytic rather than oxidative inactivation. J Clin Invest. 1985 Jun;75(6):1758–1762. doi: 10.1172/JCI111887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bayer E. A., Wilchek M., Skutelsky E. Affinity cytochemistry: the localization of lectin and antibody receptors on erythrocytes via the avidin-biotin complex. FEBS Lett. 1976 Oct 1;68(2):240–244. doi: 10.1016/0014-5793(76)80445-0. [DOI] [PubMed] [Google Scholar]
  4. Brozna J. P., Senior R. M., Kreutzer D. L., Ward P. A. Chemotactic factor inactivators of human granulocytes. J Clin Invest. 1977 Dec;60(6):1280–1288. doi: 10.1172/JCI108887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Byrne R. E., Polacek D., Gordon J. I., Scanu A. M. The enzyme that cleaves apolipoprotein A-II upon in vitro incubation of human plasma high-density lipoprotein-3 with blood polymorphonuclear cells is an elastase. J Biol Chem. 1984 Dec 10;259(23):14537–14543. [PubMed] [Google Scholar]
  6. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  7. Campbell E. J. Preventive therapy of emphysema. Lessons from the elastase model. Am Rev Respir Dis. 1986 Sep;134(3):435–437. doi: 10.1164/arrd.1986.134.3.435. [DOI] [PubMed] [Google Scholar]
  8. Campbell E. J., Senior R. M., McDonald J. A., Cox D. L. Proteolysis by neutrophils. Relative importance of cell-substrate contact and oxidative inactivation of proteinase inhibitors in vitro. J Clin Invest. 1982 Oct;70(4):845–852. doi: 10.1172/JCI110681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Campbell E. J., Senior R. M., Welgus H. G. Extracellular matrix injury during lung inflammation. Chest. 1987 Jul;92(1):161–167. doi: 10.1378/chest.92.1.161. [DOI] [PubMed] [Google Scholar]
  10. Carp H., Janoff A. In vitro suppression of serum elastase-inhibitory capacity by reactive oxygen species generated by phagocytosing polymorphonuclear leukocytes. J Clin Invest. 1979 Apr;63(4):793–797. doi: 10.1172/JCI109364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carp H., Janoff A. Inactivation of bronchial mucous proteinase inhibitor by cigarette smoke and phagocyte-derived oxidants. Exp Lung Res. 1980 Aug;1(3):225–237. doi: 10.3109/01902148009065462. [DOI] [PubMed] [Google Scholar]
  12. Carp H., Janoff A. Potential mediator of inflammation. Phagocyte-derived oxidants suppress the elastase-inhibitory capacity of alpha 1-proteinase inhibitor in vitro. J Clin Invest. 1980 Nov;66(5):987–995. doi: 10.1172/JCI109968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Chapman H. A., Jr, Stone O. L. Comparison of live human neutrophil and alveolar macrophage elastolytic activity in vitro. Relative resistance of macrophage elastolytic activity to serum and alveolar proteinase inhibitors. J Clin Invest. 1984 Nov;74(5):1693–1700. doi: 10.1172/JCI111586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chapman H. A., Jr, Vavrin Z., Hibbs J. B., Jr Macrophage fibrinolytic activity: identification of two pathways of plasmin formation by intact cells and of a plasminogen activator inhibitor. Cell. 1982 Mar;28(3):653–662. doi: 10.1016/0092-8674(82)90220-3. [DOI] [PubMed] [Google Scholar]
  15. Chen W. T., Chen J. M., Parsons S. J., Parsons J. T. Local degradation of fibronectin at sites of expression of the transforming gene product pp60src. Nature. 1985 Jul 11;316(6024):156–158. doi: 10.1038/316156a0. [DOI] [PubMed] [Google Scholar]
  16. Clark R. A., Stone P. J., El Hag A., Calore J. D., Franzblau C. Myeloperoxidase-catalyzed inactivation of alpha 1-protease inhibitor by human neutrophils. J Biol Chem. 1981 Apr 10;256(7):3348–3353. [PubMed] [Google Scholar]
  17. Dwenger A., Tost P., Holle W. Evaluation of elastase and alpha 1-proteinase inhibitor-elastase uptake by polymorphonuclear leukocytes and evidence of an elastase-specific receptor. J Clin Chem Clin Biochem. 1986 May;24(5):299–308. doi: 10.1515/cclm.1986.24.5.299. [DOI] [PubMed] [Google Scholar]
  18. Francis C. W., Marder V. J. Degradation of cross-linked fibrin by human leukocyte proteases. J Lab Clin Med. 1986 Apr;107(4):342–352. [PubMed] [Google Scholar]
  19. Gadek J. E., Fells G. A., Wright D. G., Crystal R. G. Human neutrophil elastase functions as a type III collagen "collagenase". Biochem Biophys Res Commun. 1980 Aug 29;95(4):1815–1822. doi: 10.1016/s0006-291x(80)80110-0. [DOI] [PubMed] [Google Scholar]
  20. Ganz T. Preventive therapy of emphysema: lessons from the elastase model. Am Rev Respir Dis. 1987 Apr;135(4):984–984. doi: 10.1164/arrd.1987.135.4.984a. [DOI] [PubMed] [Google Scholar]
  21. Havemann K., Gramse M. Physiology and pathophysiology of neutral proteinases of human granulocytes. Adv Exp Med Biol. 1984;167:1–20. doi: 10.1007/978-1-4615-9355-3_1. [DOI] [PubMed] [Google Scholar]
  22. Henson P. M. The immunologic release of constituents from neutrophil leukocytes. II. Mechanisms of release during phagocytosis, and adherence to nonphagocytosable surfaces. J Immunol. 1971 Dec;107(6):1547–1557. [PubMed] [Google Scholar]
  23. Janoff A., Carp H., Lee D. K. Inactivation of alpha 1-proteinase inhibitor and bronchial mucous proteinase inhibitor by cigarette smoke in vitro and in vivo. Bull Eur Physiopathol Respir. 1980;16 (Suppl):321–340. doi: 10.1016/b978-0-08-027379-2.50034-x. [DOI] [PubMed] [Google Scholar]
  24. Keiser H., Greenwald R. A., Feinstein G., Janoff A. Degradation of cartilage proteoglycan by human leukocyte granule neutral proteases--a model of joint injury. II. Degradation of isolated bovine nasal cartilage proteoglycan. J Clin Invest. 1976 Mar;57(3):625–632. doi: 10.1172/JCI108318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Keller H. U., Barandun S., Kistler P., Ploem J. S. Locomotion and adhesion of neutrophil granulocytes. Effects of albumin, fibrinogen and gamma globulins studied by reflection contrast microscopy. Exp Cell Res. 1979 Sep;122(2):351–362. doi: 10.1016/0014-4827(79)90311-2. [DOI] [PubMed] [Google Scholar]
  26. Keller H. U., Zimmermann A., Cottier H. Crawling-like movements, adhesion to solid substrata and chemokinesis of neutrophil granulocytes. J Cell Sci. 1983 Nov;64:89–106. doi: 10.1242/jcs.64.1.89. [DOI] [PubMed] [Google Scholar]
  27. Kurecki T., Kress L. F., Laskowski M., Sr Purification of human plasma alpha 2 macroglobulin and alpha 1 proteinase inhibitor using zinc chelate chromatography. Anal Biochem. 1979 Nov 1;99(2):415–420. doi: 10.1016/s0003-2697(79)80026-3. [DOI] [PubMed] [Google Scholar]
  28. Mainardi C. L., Dixit S. N., Kang A. H. Degradation of type IV (basement membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte granules. J Biol Chem. 1980 Jun 10;255(11):5435–5441. [PubMed] [Google Scholar]
  29. Mainardi C. L., Hasty D. L., Seyer J. M., Kang A. H. Specific cleavage of human type III collagen by human polymorphonuclear leukocyte elastase. J Biol Chem. 1980 Dec 25;255(24):12006–12010. [PubMed] [Google Scholar]
  30. Martodam R. R., Baugh R. J., Twumasi D. Y., Liener I. E. A rapid procedure for the large scale purification of elastase and cathepsin G from human sputum. Prep Biochem. 1979;9(1):15–31. doi: 10.1080/00327487908061669. [DOI] [PubMed] [Google Scholar]
  31. Matheson N. R., Wong P. S., Schuyler M., Travis J. Interaction of human alpha-1-proteinase inhibitor with neutrophil myeloperoxidase. Biochemistry. 1981 Jan 20;20(2):331–336. doi: 10.1021/bi00505a016. [DOI] [PubMed] [Google Scholar]
  32. Matheson N. R., Wong P. S., Travis J. Enzymatic inactivation of human alpha-1-proteinase inhibitor by neutrophil myeloperoxidase. Biochem Biophys Res Commun. 1979 May 28;88(2):402–409. doi: 10.1016/0006-291x(79)92062-x. [DOI] [PubMed] [Google Scholar]
  33. McDonald J. A., Kelley D. G. Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments. J Biol Chem. 1980 Sep 25;255(18):8848–8858. [PubMed] [Google Scholar]
  34. Ohlsson K., Fryksmark U., Tegner H. The effect of cigarette smoke condensate on alpha 1-antitrypsin, antileukoprotease and granulocyte elastase. Eur J Clin Invest. 1980 Oct;10(5):373–379. doi: 10.1111/j.1365-2362.1980.tb00048.x. [DOI] [PubMed] [Google Scholar]
  35. Ossanna P. J., Test S. T., Matheson N. R., Regiani S., Weiss S. J. Oxidative regulation of neutrophil elastase-alpha-1-proteinase inhibitor interactions. J Clin Invest. 1986 Jun;77(6):1939–1951. doi: 10.1172/JCI112523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Pipoly D. J., Crouch E. C. Degradation of native type IV procollagen by human neutrophil elastase. Implications for leukocyte-mediated degradation of basement membranes. Biochemistry. 1987 Sep 8;26(18):5748–5754. doi: 10.1021/bi00392a025. [DOI] [PubMed] [Google Scholar]
  37. Polacek D., Byrne R. E., Fless G. M., Scanu A. M. In vitro proteolysis of human plasma low density lipoproteins by an elastase released from human blood polymorphonuclear cells. J Biol Chem. 1986 Feb 15;261(5):2057–2063. [PubMed] [Google Scholar]
  38. Schalkwijk J., van den Berg W. B., van de Putte L. B., Joosten L. A. Elastase secreted by activated polymorphonuclear leucocytes causes chondrocyte damage and matrix degradation in intact articular cartilage: escape from inactivation by alpha-1-proteinase inhibitor. Br J Exp Pathol. 1987 Feb;68(1):81–88. [PMC free article] [PubMed] [Google Scholar]
  39. Senior R. M., Campbell E. J. Neutral proteinases from human inflammatory cells. A critical review of their role in extracellular matrix degradation. Clin Lab Med. 1983 Dec;3(4):645–666. [PubMed] [Google Scholar]
  40. Sibille Y., Lwebuga-Mukasa J. S., Polomski L., Merrill W. W., Ingbar D. H., Gee J. B. An in vitro model for polymorphonuclear-leukocyte-induced injury to an extracellular matrix. Relative contribution of oxidants and elastase to fibronectin release from amnionic membranes. Am Rev Respir Dis. 1986 Jul;134(1):134–140. doi: 10.1164/arrd.1986.134.1.134. [DOI] [PubMed] [Google Scholar]
  41. Travis J., Giles P. J., Porcelli L., Reilly C. F., Baugh R., Powers J. Human leucocyte elastase and cathepsin G: structural and functional characteristics. Ciba Found Symp. 1979;(75):51–68. doi: 10.1002/9780470720585.ch4. [DOI] [PubMed] [Google Scholar]
  42. Travis J., Salvesen G. S. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
  43. Vissers M. C., Day W. A., Winterbourn C. C. Neutrophils adherent to a nonphagocytosable surface (glomerular basement membrane) produce oxidants only at the site of attachment. Blood. 1985 Jul;66(1):161–166. [PubMed] [Google Scholar]
  44. Weiss S. J., Curnutte J. T., Regiani S. Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J Immunol. 1986 Jan;136(2):636–641. [PubMed] [Google Scholar]
  45. Weiss S. J., Klein R., Slivka A., Wei M. Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest. 1982 Sep;70(3):598–607. doi: 10.1172/JCI110652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Weiss S. J., Lampert M. B., Test S. T. Long-lived oxidants generated by human neutrophils: characterization and bioactivity. Science. 1983 Nov 11;222(4624):625–628. doi: 10.1126/science.6635660. [DOI] [PubMed] [Google Scholar]
  47. Weiss S. J., Regiani S. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest. 1984 May;73(5):1297–1303. doi: 10.1172/JCI111332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Weitz J. I., Landman S. L., Crowley K. A., Birken S., Morgan F. J. Development of an assay for in vivo human neutrophil elastase activity. Increased elastase activity in patients with alpha 1-proteinase inhibitor deficiency. J Clin Invest. 1986 Jul;78(1):155–162. doi: 10.1172/JCI112545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Wright S. D., Silverstein S. C. Phagocytosing macrophages exclude proteins from the zones of contact with opsonized targets. Nature. 1984 May 24;309(5966):359–361. doi: 10.1038/309359a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES