Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Mar 1;106(3):829–844. doi: 10.1083/jcb.106.3.829

Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation

PMCID: PMC2115082  PMID: 2450099

Abstract

We have developed an experimental paradigm to study the mechanism by which nerve growth factor (NGF) allows the survival of sympathetic neurons. Dissociated sympathetic neurons from embryonic day-21 rats were grown in vitro for 7 d in the presence of NGF. Neurons were then deprived of trophic support by adding anti-NGF antiserum, causing them to die between 24 and 48 h later. Ultrastructural changes included disruption of neurites, followed by cell body changes characterized by an accumulation of lipid droplets, changes in the nuclear membrane, and dilation of the rough endoplasmic reticulum. No primary alterations of mitochondria or lysosomes were observed. The death of NGF-deprived neurons was characterized biochemically by assessing [35S]methionine incorporation into TCA precipitable protein and by measuring the release of the cytosolic enzyme adenylate kinase into the culture medium. Methionine incorporation began to decrease approximately 18 h post-deprivation and was maximally depressed by 36 h. Adenylate kinase began to appear in the culture medium approximately 30 h after deprivation, reaching a maximum by 54 h. The death of NGF-deprived neurons was entirely prevented by inhibiting protein or RNA synthesis. Cycloheximide, puromycin, anisomycin, actinomycin-D, and dichlorobenzimidazole riboside all prevented neuronal death subsequent to NGF deprivation as assessed by the above morphologic and biochemical criteria. The fact that sympathetic neurons must synthesize protein and RNA to die when deprived of NGF indicates that NGF, and presumably other neurotrophic factors, maintains neuronal survival by suppressing an endogenous, active death program.

Full Text

The Full Text of this article is available as a PDF (7.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angeletti P. U., Levi-Montalcini R., Caramia F. Analysis of the effects of the antiserum to the nerve growth factor in adult mice. Brain Res. 1971 Apr 2;27(2):343–355. doi: 10.1016/0006-8993(71)90259-9. [DOI] [PubMed] [Google Scholar]
  2. Bocchini V., Angeletti P. U. The nerve growth factor: purification as a 30,000-molecular-weight protein. Proc Natl Acad Sci U S A. 1969 Oct;64(2):787–794. doi: 10.1073/pnas.64.2.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cohen J. J., Duke R. C. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol. 1984 Jan;132(1):38–42. [PubMed] [Google Scholar]
  4. Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
  5. DiStefano P. S., Schweitzer J. B., Taniuchi M., Johnson E. M., Jr Selective destruction of nerve growth factor receptor-bearing cells in vitro using a hybrid toxin composed of ricin A chain and a monoclonal antibody against the nerve growth factor receptor. J Cell Biol. 1985 Sep;101(3):1107–1114. doi: 10.1083/jcb.101.3.1107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dickson G., Prentice H., Julien J. P., Ferrari G., Leon A., Walsh F. S. Nerve growth factor activates Thy-1 and neurofilament gene transcription in rat PC12 cells. EMBO J. 1986 Dec 20;5(13):3449–3453. doi: 10.1002/j.1460-2075.1986.tb04668.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ellis H. M., Horvitz H. R. Genetic control of programmed cell death in the nematode C. elegans. Cell. 1986 Mar 28;44(6):817–829. doi: 10.1016/0092-8674(86)90004-8. [DOI] [PubMed] [Google Scholar]
  8. Fahrbach S. E., Truman J. W. Mechanisms for programmed cell death in the nervous system of a moth. Ciba Found Symp. 1987;126:65–81. doi: 10.1002/9780470513422.ch5. [DOI] [PubMed] [Google Scholar]
  9. Fenton E. L. Tissue culture assay of nerve growth factor and of the specific antiserum. Exp Cell Res. 1970 Mar;59(3):383–392. doi: 10.1016/0014-4827(70)90645-2. [DOI] [PubMed] [Google Scholar]
  10. Gorin P. D., Johnson E. M. Experimental autoimmune model of nerve growth factor deprivation: effects on developing peripheral sympathetic and sensory neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5382–5386. doi: 10.1073/pnas.76.10.5382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Greene L. A., Shooter E. M. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci. 1980;3:353–402. doi: 10.1146/annurev.ne.03.030180.002033. [DOI] [PubMed] [Google Scholar]
  12. HAMBURGER J., RICHET G. Enseignements tirés de la pratique du rein artificiel pour l'interprétation des désordres électrolytiques de l'urémie aiguë. Rev Fr Etud Clin Biol. 1956 Jan;1(1):39–55. [PubMed] [Google Scholar]
  13. HAMBURGER V., LEVI-MONTALCINI R. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool. 1949 Aug;111(3):457–501. doi: 10.1002/jez.1401110308. [DOI] [PubMed] [Google Scholar]
  14. Halegoua S., Patrick J. Nerve growth factor mediates phosphorylation of specific proteins. Cell. 1980 Nov;22(2 Pt 2):571–581. doi: 10.1016/0092-8674(80)90367-0. [DOI] [PubMed] [Google Scholar]
  15. Hamburger V., Brunso-Bechtold J. K., Yip J. W. Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci. 1981 Jan;1(1):60–71. doi: 10.1523/JNEUROSCI.01-01-00060.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hendry I. A., Campbell J. Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J Neurocytol. 1976 Jun;5(3):351–360. doi: 10.1007/BF01175120. [DOI] [PubMed] [Google Scholar]
  17. Hendry I. A., Stöckel K., Thoenen H., Iversen L. L. The retrograde axonal transport of nerve growth factor. Brain Res. 1974 Mar 15;68(1):103–121. doi: 10.1016/0006-8993(74)90536-8. [DOI] [PubMed] [Google Scholar]
  18. Johnson E. M., Jr, Gorin P. D., Brandeis L. D., Pearson J. Dorsal root ganglion neurons are destroyed by exposure in utero to maternal antibody to nerve growth factor. Science. 1980 Nov 21;210(4472):916–918. doi: 10.1126/science.7192014. [DOI] [PubMed] [Google Scholar]
  19. Johnson E. M., Jr, Taniuchi M., Clark H. B., Springer J. E., Koh S., Tayrien M. W., Loy R. Demonstration of the retrograde transport of nerve growth factor receptor in the peripheral and central nervous system. J Neurosci. 1987 Mar;7(3):923–929. doi: 10.1523/JNEUROSCI.07-03-00923.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnson M. I., Argiro V. Techniques in the tissue culture of rat sympathetic neurons. Methods Enzymol. 1983;103:334–347. doi: 10.1016/s0076-6879(83)03022-0. [DOI] [PubMed] [Google Scholar]
  21. Lazarus K. J., Bradshaw R. A., West N. R., Bunge P. Adaptive survival or rat sympathetic neurons cultured without supporting cells or exogenous nerve growth factor. Brain Res. 1976 Aug 20;113(1):159–164. doi: 10.1016/0006-8993(76)90013-5. [DOI] [PubMed] [Google Scholar]
  22. Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Levi-Montalcini R., Caramia F., Angeletti P. U. Alterations in the fine structure of nucleoli in sympathetic neurons following NGF-antiserum treatment. Brain Res. 1969 Jan;12(1):54–73. doi: 10.1016/0006-8993(69)90055-9. [DOI] [PubMed] [Google Scholar]
  24. Lockshin R. A. Programmed cell death. Activation of lysis by a mechanism involving the synthesis of protein. J Insect Physiol. 1969 Sep;15(9):1505–1516. doi: 10.1016/0022-1910(69)90172-3. [DOI] [PubMed] [Google Scholar]
  25. Pratt R. M., Greene R. M. Inhibition of palatal epithelial cell death by altered protein synthesis. Dev Biol. 1976 Nov;54(1):135–145. doi: 10.1016/0012-1606(76)90292-x. [DOI] [PubMed] [Google Scholar]
  26. Rich K. M., Yip H. K., Osborne P. A., Schmidt R. E., Johnson E. M., Jr Role of nerve growth factor in the adult dorsal root ganglia neuron and its response to injury. J Comp Neurol. 1984 Nov 20;230(1):110–118. doi: 10.1002/cne.902300110. [DOI] [PubMed] [Google Scholar]
  27. Rowland E. A., Müller T. H., Goldstein M., Greene L. A. Cell-free detection and characterization of a novel nerve growth factor-activated protein kinase in PC12 cells. J Biol Chem. 1987 Jun 5;262(16):7504–7513. [PubMed] [Google Scholar]
  28. Schucker F. Effects of NGF-antiserum in sympathetic neurons during early postnatal development. Exp Neurol. 1972 Jul;36(1):59–78. doi: 10.1016/0014-4886(72)90136-7. [DOI] [PubMed] [Google Scholar]
  29. Tata J. R. Requirement for RNA and protein synthesis for induced regression of the tadpole tail in organ culture. Dev Biol. 1966 Feb;13(1):77–94. doi: 10.1016/0012-1606(66)90050-9. [DOI] [PubMed] [Google Scholar]
  30. Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
  31. Tiercy J. M., Shooter E. M. Early changes in the synthesis of nuclear and cytoplasmic proteins are induced by nerve growth factor in differentiating rat PC12 cells. J Cell Biol. 1986 Dec;103(6 Pt 1):2367–2378. doi: 10.1083/jcb.103.6.2367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Truman J. W. Cell death in invertebrate nervous systems. Annu Rev Neurosci. 1984;7:171–188. doi: 10.1146/annurev.ne.07.030184.001131. [DOI] [PubMed] [Google Scholar]
  33. Umansky S. R. The genetic program of cell death. Hypothesis and some applications: transformation, carcinogenesis, ageing. J Theor Biol. 1982 Aug 21;97(4):591–602. doi: 10.1016/0022-5193(82)90360-5. [DOI] [PubMed] [Google Scholar]
  34. Wilcox C. L., Johnson E. M., Jr Nerve growth factor deprivation results in the reactivation of latent herpes simplex virus in vitro. J Virol. 1987 Jul;61(7):2311–2315. doi: 10.1128/jvi.61.7.2311-2315.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wyllie A. H., Kerr J. F., Currie A. R. Cell death: the significance of apoptosis. Int Rev Cytol. 1980;68:251–306. doi: 10.1016/s0074-7696(08)62312-8. [DOI] [PubMed] [Google Scholar]
  36. Yankner B. A., Shooter E. M. The biology and mechanism of action of nerve growth factor. Annu Rev Biochem. 1982;51:845–868. doi: 10.1146/annurev.bi.51.070182.004213. [DOI] [PubMed] [Google Scholar]
  37. Yip H. K., Johnson E. M., Jr Developing dorsal root ganglion neurons require trophic support from their central processes: evidence for a role of retrogradely transported nerve growth factor from the central nervous system to the periphery. Proc Natl Acad Sci U S A. 1984 Oct;81(19):6245–6249. doi: 10.1073/pnas.81.19.6245. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES