Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Mar 1;106(3):821–828. doi: 10.1083/jcb.106.3.821

A role for gangliosides in astroglial cell differentiation in vitro

PMCID: PMC2115083  PMID: 2831235

Abstract

Rat cerebral astroglial cells in culture display specific morphological and biochemical behaviors in response to exogenously added gangliosides. To examine a potential function for endogenous gangliosides in the processes of astroglial cell differentiation, we have used the B subunit of cholera toxin as a ganglioside-specific probe. The B subunit, which is multivalent and binds specifically to GM1 ganglioside on the cell surface, induced a classical star-shaped (stellate) morphology in the astroglial cells and inhibited DNA synthesis in a dose-dependent manner. The morphological response was massive and complete within 2 h, with an ED50 of 0.8 nM, and appeared to depend on the direct interaction of the B subunit with GM1 on the cell surface. A B subunit-evoked inhibition of DNA synthesis and cell division (ED50 = 0.2 nM) was observed when the cells were stimulated with defined mitogens, such as epidermal growth factor and basic fibroblast growth factor. Maximal inhibition approached 80% within 24 h. The effects of the B subunit were unrelated to increases in cAMP. These observations, taken together with previous studies, demonstrate that both endogenously occurring plasma membrane gangliosides and exogenously supplied gangliosides can influence the differentiative state (as judged by morphological and growth behaviors) of astroglial cells in vitro.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballou R. J., Tseng M. T. Improved method for processing autoradiographs of cells grown on multiwell plates. In Vitro. 1983 Nov;19(11):805–806. doi: 10.1007/BF02618158. [DOI] [PubMed] [Google Scholar]
  2. Belardelli F., Ausiello C., Tomasi M., Rossi G. B. Cholera toxin and its B subunit inhibit interferon effects on virus production and erythroid differentiation of Friend leukemia cells. Virology. 1980 Nov;107(1):109–120. doi: 10.1016/0042-6822(80)90277-9. [DOI] [PubMed] [Google Scholar]
  3. Bijsterbosch M. K., Meade C. J., Turner G. A., Klaus G. G. B lymphocyte receptors and polyphosphoinositide degradation. Cell. 1985 Jul;41(3):999–1006. doi: 10.1016/s0092-8674(85)80080-5. [DOI] [PubMed] [Google Scholar]
  4. Chan K. F. Ganglioside-modulated protein phosphorylation. Partial purification and characterization of a ganglioside-stimulated protein kinase in brain. J Biol Chem. 1987 Apr 15;262(11):5248–5255. [PubMed] [Google Scholar]
  5. Ciesielski-Treska J., Bader M. F., Aunis D. Microtubular organization in flat epitheloid and stellate process-bearing astrocytes in culture. Neurochem Res. 1982 Mar;7(3):275–286. doi: 10.1007/BF00965640. [DOI] [PubMed] [Google Scholar]
  6. Critchley D. R., Streuli C. H., Kellie S., Ansell S., Patel B. Characterization of the cholera toxin receptor on Balb/c 3T3 cells as a ganglioside similar to, or identical with, ganglioside GM1. No evidence for galactoproteins with receptor activity. Biochem J. 1982 Apr 15;204(1):209–219. doi: 10.1042/bj2040209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cuello A. C., Stephens P. H., Tagari P. C., Sofroniew M. V., Pearson R. C. Retrograde changes in the nucleus basalis of the rat, caused by cortical damage, are prevented by exogenous ganglioside GM1. Brain Res. 1986 Jun 25;376(2):373–377. doi: 10.1016/0006-8993(86)90202-7. [DOI] [PubMed] [Google Scholar]
  8. Doherty P., Dickson J. G., Flanigan T. P., Walsh F. S. Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J Neurochem. 1985 Apr;44(4):1259–1265. doi: 10.1111/j.1471-4159.1985.tb08752.x. [DOI] [PubMed] [Google Scholar]
  9. Doherty P., Walsh F. S. Control of Thy-1 glycoprotein expression in cultures of PC12 cells. J Neurochem. 1987 Aug;49(2):610–616. doi: 10.1111/j.1471-4159.1987.tb02907.x. [DOI] [PubMed] [Google Scholar]
  10. Doherty P., Walsh F. S. Ganglioside GM1 antibodies and B-cholera toxin bind specifically to embryonic chick dorsal root ganglion neurons but do not modulate neurite regeneration. J Neurochem. 1987 Apr;48(4):1237–1244. doi: 10.1111/j.1471-4159.1987.tb05652.x. [DOI] [PubMed] [Google Scholar]
  11. Facci L., Skaper S. D., Levin D. L., Varon S. Dissociation of the stellate morphology from intracellular cyclic AMP levels in cultured rat brain astroglial cells: effects of ganglioside GM1 and lysophosphatidylserine. J Neurochem. 1987 Feb;48(2):566–573. doi: 10.1111/j.1471-4159.1987.tb04130.x. [DOI] [PubMed] [Google Scholar]
  12. Fedoroff S., Ahmed I., Opas M., Kalnins V. I. Organization of microfilaments in astrocytes that form in the presence of dibutyryl cyclic AMP in cultures, and which are similar to reactive astrocytes in vivo. Neuroscience. 1987 Jul;22(1):255–266. doi: 10.1016/0306-4522(87)90216-8. [DOI] [PubMed] [Google Scholar]
  13. Fishman P. H., Bradley R. M., Rebois R. V., Brady R. O. The role of gangliosides in the interaction of human chorionic gonadotropin and cholera toxin with murine Leydig tumor cells. J Biol Chem. 1984 Jun 25;259(12):7983–7989. [PubMed] [Google Scholar]
  14. Fishman P. H., Brady R. O. Biosynthesis and function of gangliosides. Science. 1976 Nov 26;194(4268):906–915. doi: 10.1126/science.185697. [DOI] [PubMed] [Google Scholar]
  15. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  16. Goldenring J. R., Otis L. C., Yu R. K., DeLorenzo R. J. Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J Neurochem. 1985 Apr;44(4):1229–1234. doi: 10.1111/j.1471-4159.1985.tb08748.x. [DOI] [PubMed] [Google Scholar]
  17. Hagmann J., Fishman P. H. Detergent extraction of cholera toxin and gangliosides from cultured cells and isolated membranes. Biochim Biophys Acta. 1982 Apr 29;720(2):181–187. doi: 10.1016/0167-4889(82)90010-6. [DOI] [PubMed] [Google Scholar]
  18. Hakomori S. Glycosphingolipids in cellular interaction, differentiation, and oncogenesis. Annu Rev Biochem. 1981;50:733–764. doi: 10.1146/annurev.bi.50.070181.003505. [DOI] [PubMed] [Google Scholar]
  19. Hornbeck P., Paul W. E. Anti-immunoglobulin and phorbol ester induce phosphorylation of proteins associated with the plasma membrane and cytoskeleton in murine B lymphocytes. J Biol Chem. 1986 Nov 5;261(31):14817–14824. [PubMed] [Google Scholar]
  20. Katoh-Semba R., Facci L., Skaper S. D., Varon S. Gangliosides stimulate astroglial cell proliferation in the absence of serum. J Cell Physiol. 1986 Jan;126(1):147–153. doi: 10.1002/jcp.1041260120. [DOI] [PubMed] [Google Scholar]
  21. Kellie S., Patel B., Pierce E. J., Critchley D. R. Capping of cholera toxin-ganglioside GM1 complexes on mouse lymphocytes is accompanied by co-capping of alpha-actinin. J Cell Biol. 1983 Aug;97(2):447–454. doi: 10.1083/jcb.97.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kreutter D., Kim J. Y., Goldenring J. R., Rasmussen H., Ukomadu C., DeLorenzo R. J., Yu R. K. Regulation of protein kinase C activity by gangliosides. J Biol Chem. 1987 Feb 5;262(4):1633–1637. [PubMed] [Google Scholar]
  23. Ledeen R. W. Ganglioside structures and distribution: are they localized at the nerve ending? J Supramol Struct. 1978;8(1):1–17. doi: 10.1002/jss.400080102. [DOI] [PubMed] [Google Scholar]
  24. Leon A., Benvegnù D., Dal Toso R., Presti D., Facci L., Giorgi O., Toffano G. Dorsal root ganglia and nerve growth factor: a model for understanding the mechanism of GM1 effects on neuronal repair. J Neurosci Res. 1984;12(2-3):277–287. doi: 10.1002/jnr.490120215. [DOI] [PubMed] [Google Scholar]
  25. Lim R., Miller J. F. Sequential interaction of glia maturation factor with insulin. Science. 1984 Mar 30;223(4643):1419–1420. doi: 10.1126/science.6367047. [DOI] [PubMed] [Google Scholar]
  26. Magistretti P. J., Manthorpe M., Bloom F. E., Varon S. Functional receptors for vasoactive intestinal polypeptide in cultured astroglia from neonatal rat brain. Regul Pept. 1983 Apr;6(1):71–80. doi: 10.1016/0167-0115(83)90136-2. [DOI] [PubMed] [Google Scholar]
  27. Manthorpe M., Adler R., Varon S. Development, reactivity and GFA immunofluorescence of astroglia-containing monolayer cultures from rat cerebrum. J Neurocytol. 1979 Oct;8(5):605–621. doi: 10.1007/BF01208512. [DOI] [PubMed] [Google Scholar]
  28. Mugnai G., Culp L. A. Cooperativity of ganglioside-dependent with protein-dependent substratum adhesion and neurite extension of human neuroblastoma cells. Exp Cell Res. 1987 Apr;169(2):328–344. doi: 10.1016/0014-4827(87)90194-7. [DOI] [PubMed] [Google Scholar]
  29. Rudge J. S., Manthorpe M., Varon S. The output of neuronotrophic and neurite-promoting agents from rat brain astroglial cells: a microculture method for screening potential regulatory molecules. Brain Res. 1985 Apr;351(2):161–172. doi: 10.1016/0165-3806(85)90188-9. [DOI] [PubMed] [Google Scholar]
  30. Sabel B. A., Slavin M. D., Stein D. G. GM1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage. Science. 1984 Jul 20;225(4659):340–342. doi: 10.1126/science.6740316. [DOI] [PubMed] [Google Scholar]
  31. Sahyoun N., Shatila T., LeVine H., 3rd, Cuatrecasas P. Skeletal association of the cholera toxin receptor in rat erythrocytes. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1216–1222. doi: 10.1016/s0006-291x(81)80141-6. [DOI] [PubMed] [Google Scholar]
  32. Skaper S. D., Facci L., Rudge J., Katoh-Semba R., Manthorpe M., Varon S. Morphological modulation of cultured rat brain astroglial cells: antagonism by ganglioside GM1. Brain Res. 1986 Feb;390(1):21–31. doi: 10.1016/0165-3806(86)90148-3. [DOI] [PubMed] [Google Scholar]
  33. Skaper S. D., Katoh-Semba R., Varon S. GM1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Brain Res. 1985 Nov;355(1):19–26. doi: 10.1016/0165-3806(85)90003-3. [DOI] [PubMed] [Google Scholar]
  34. Skaper S. D., Varon S. Ionic responses and growth stimulation in rat astroglial cells: differential mechanisms of gangliosides and serum. J Cell Physiol. 1987 Mar;130(3):453–459. doi: 10.1002/jcp.1041300320. [DOI] [PubMed] [Google Scholar]
  35. Sofroniew M. V., Pearson R. C., Cuello A. C., Tagari P. C., Stephens P. H. Parenterally administered GM1 ganglioside prevents retrograde degeneration of cholinergic cells of the rat basal forebrain. Brain Res. 1986 Nov 29;398(2):393–396. doi: 10.1016/0006-8993(86)91503-9. [DOI] [PubMed] [Google Scholar]
  36. Spiegel S., Fishman P. H. Gangliosides as bimodal regulators of cell growth. Proc Natl Acad Sci U S A. 1987 Jan;84(1):141–145. doi: 10.1073/pnas.84.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Spiegel S., Fishman P. H., Weber R. J. Direct evidence that endogenous GM1 ganglioside can mediate thymocyte proliferation. Science. 1985 Dec 13;230(4731):1285–1287. doi: 10.1126/science.2999979. [DOI] [PubMed] [Google Scholar]
  38. Streuli C. H., Patel B., Critchley D. R. The cholera toxin receptor ganglioside GM remains associated with triton X-100 cytoskeletons of BALB/c-3T3 cells. Exp Cell Res. 1981 Dec;136(2):247–254. doi: 10.1016/0014-4827(81)90002-1. [DOI] [PubMed] [Google Scholar]
  39. Toffano G., Savoini G. E., Moroni F., Lombardi G., Calzà L., Agnati L. F. Chronic GM1 ganglioside treatment reduces dopamine cell body degeneration in the substantia nigra after unilateral hemitransection in rat. Brain Res. 1984 Apr 2;296(2):233–239. doi: 10.1016/0006-8993(84)90061-1. [DOI] [PubMed] [Google Scholar]
  40. Tomasi M., Battistini A., Araco A., Roda L. G., D'Agnolo G. The role of the reactive disulfide bond in the interaction of cholera-toxin functional regions. Eur J Biochem. 1979 Feb 1;93(3):621–627. doi: 10.1111/j.1432-1033.1979.tb12862.x. [DOI] [PubMed] [Google Scholar]
  41. Tsuji S., Nakajima J., Sasaki T., Nagai Y. Bioactive gangliosides. IV. Ganglioside GQ1b/Ca2+ dependent protein kinase activity exists in the plasma membrane fraction of neuroblastoma cell line, GOTO. J Biochem. 1985 Mar;97(3):969–972. doi: 10.1093/oxfordjournals.jbchem.a135140. [DOI] [PubMed] [Google Scholar]
  42. Wu D. K., de Vellis J. Effect of forskolin on primary cultures of astrocytes and oligodendrocytes. J Cyclic Nucleotide Protein Phosphor Res. 1983;9(1):59–67. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES