Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Mar 1;106(3):697–703. doi: 10.1083/jcb.106.3.697

Relation between the organization of spectrin and of membrane lipids in lymphocytes

PMCID: PMC2115087  PMID: 3279051

Abstract

In lymphocytes, the cytoskeletal protein spectrin exhibits two organizational states. Because the plasma membrane lipids of lymphocytes also display two organizational states, it was asked whether there is a relation between the organization of spectrin and of membrane lipids. When mouse thymocytes were stained with merocyanine 540 (MC540), a fluorescent lipophilic probe that binds preferentially to loosely packed, disorganized lipid bilayers, some cells fluoresced brightly and some only dimly or not at all. When the same population was stained for spectrin by indirect immunofluorescence, the spectrin in some cells was uniformly distributed, while in others it was concentrated in a unipolar aggregate. Techniques enriching for mature thymocytes selected for cells displaying low MC540 fluorescence and aggregated spectrin, the same characteristics found in peripheral blood lymphocytes. Flow cytometric sorting of thymocytes based on MC540 phenotype simultaneously sorted them by spectrin phenotype. Finally, treatment with agents that alter the distribution of spectrin caused mature lymphocytes to display high MC540 fluorescence and uniform spectrin. Thus, a relation exists between the organizational states of spectrin and of membrane lipids in lymphocytes: aggregated spectrin is found in cells with tightly organized membrane lipids, uniform spectrin in those with loosely organized lipids. Spectrin may thus be involved in modulating membrane lipid organization in lymphocytes as it is in erythrocytes. Since loosely organized lipids may promote adhesion of blood cells to reticuloendothelial cells, spectrin may thereby be involved in transducing an internally generated adhesion signal to the lymphocyte surface.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett V., Davis J., Fowler W. E. Brain spectrin, a membrane-associated protein related in structure and function to erythrocyte spectrin. Nature. 1982 Sep 9;299(5879):126–131. doi: 10.1038/299126a0. [DOI] [PubMed] [Google Scholar]
  2. Blomgren H., Andersson B. Characteristics of the immunocompetent cells in the mouse thymus: cell population changes during cortisone-induced atrophy and subsequent regeneration. Cell Immunol. 1970 Nov;1(5):545–560. doi: 10.1016/0008-8749(70)90041-9. [DOI] [PubMed] [Google Scholar]
  3. Bourguignon L. Y., Bourguignon G. J. Capping and the cytoskeleton. Int Rev Cytol. 1984;87:195–224. doi: 10.1016/s0074-7696(08)62443-2. [DOI] [PubMed] [Google Scholar]
  4. Bourguignon L. Y., Suchard S. J., Nagpal M. L., Glenney J. R., Jr A T-lymphoma transmembrane glycoprotein (gp180) is linked to the cytoskeletal protein, fodrin. J Cell Biol. 1985 Aug;101(2):477–487. doi: 10.1083/jcb.101.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bourguignon L. Y., Walker G., Suchard S. J., Balazovich K. A lymphoma plasma membrane-associated protein with ankyrin-like properties. J Cell Biol. 1986 Jun;102(6):2115–2124. doi: 10.1083/jcb.102.6.2115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
  7. Burridge K., Kelly T., Mangeat P. Nonerythrocyte spectrins: actin-membrane attachment proteins occurring in many cell types. J Cell Biol. 1982 Nov;95(2 Pt 1):478–486. doi: 10.1083/jcb.95.2.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Choe H. R., Schlegel R. A., Rubin E., Williamson P., Westerman M. P. Alteration of red cell membrane organization in sickle cell anaemia. Br J Haematol. 1986 Aug;63(4):761–773. doi: 10.1111/j.1365-2141.1986.tb07560.x. [DOI] [PubMed] [Google Scholar]
  9. Choe H. R., Williamson P., Rubin E., Schlegel R. A. Disruption of phospholipid asymmetry in erythrocyte vesicles deficient in spectrin. Cell Biol Int Rep. 1985 Jul;9(7):597–606. doi: 10.1016/0309-1651(85)90051-7. [DOI] [PubMed] [Google Scholar]
  10. Davies G. E., Cohen C. M. Platelets contain proteins immunologically related to red cell spectrin and protein 4.1. Blood. 1985 Jan;65(1):52–59. [PubMed] [Google Scholar]
  11. Del Buono B. J., Williamson P. L., Schlegel R. A. Alterations in plasma membrane lipid organization during lymphocyte differentiation. J Cell Physiol. 1986 Mar;126(3):379–388. doi: 10.1002/jcp.1041260308. [DOI] [PubMed] [Google Scholar]
  12. Drenckhahn D., Zinke K., Schauer U., Appell K. C., Low P. S. Identification of immunoreactive forms of human erythrocyte band 3 in nonerythroid cells. Eur J Cell Biol. 1984 May;34(1):144–150. [PubMed] [Google Scholar]
  13. Glenney J. R., Jr, Glenney P. Fodrin is the general spectrin-like protein found in most cells whereas spectrin and the TW protein have a restricted distribution. Cell. 1983 Sep;34(2):503–512. doi: 10.1016/0092-8674(83)90383-5. [DOI] [PubMed] [Google Scholar]
  14. Glenney J. R., Jr, Glenney P., Weber K. F-actin-binding and cross-linking properties of porcine brain fodrin, a spectrin-related molecule. J Biol Chem. 1982 Aug 25;257(16):9781–9787. [PubMed] [Google Scholar]
  15. Goodman S. R., Shiffer K. The spectrin membrane skeleton of normal and abnormal human erythrocytes: a review. Am J Physiol. 1983 Mar;244(3):C121–C141. doi: 10.1152/ajpcell.1983.244.3.C121. [DOI] [PubMed] [Google Scholar]
  16. Haest C. W., Plasa G., Kamp D., Deuticke B. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane. Biochim Biophys Acta. 1978 May 4;509(1):21–32. doi: 10.1016/0005-2736(78)90004-4. [DOI] [PubMed] [Google Scholar]
  17. Hunt R. C., Hood J. A. Cytoskeletal influence on merocyanine 540 receptors in the plasma membrane of erythroleukemic cells. Biochim Biophys Acta. 1982 Feb 10;720(1):106–110. doi: 10.1016/0167-4889(82)90044-1. [DOI] [PubMed] [Google Scholar]
  18. McEvoy L., Williamson P., Schlegel R. A. Membrane phospholipid asymmetry as a determinant of erythrocyte recognition by macrophages. Proc Natl Acad Sci U S A. 1986 May;83(10):3311–3315. doi: 10.1073/pnas.83.10.3311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mombers C., de Gier J., Demel R. A., van Deenen L. L. Spectrin-phospholipid interaction. A monolayer study. Biochim Biophys Acta. 1980 Dec 2;603(1):52–62. doi: 10.1016/0005-2736(80)90390-9. [DOI] [PubMed] [Google Scholar]
  20. Morrot G., Cribier S., Devaux P. F., Geldwerth D., Davoust J., Bureau J. F., Fellmann P., Herve P., Frilley B. Asymmetric lateral mobility of phospholipids in the human erythrocyte membrane. Proc Natl Acad Sci U S A. 1986 Sep;83(18):6863–6867. doi: 10.1073/pnas.83.18.6863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nelson W. J., Colaço C. A., Lazarides E. Involvement of spectrin in cell-surface receptor capping in lymphocytes. Proc Natl Acad Sci U S A. 1983 Mar;80(6):1626–1630. doi: 10.1073/pnas.80.6.1626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Op den Kamp J. A. Lipid asymmetry in membranes. Annu Rev Biochem. 1979;48:47–71. doi: 10.1146/annurev.bi.48.070179.000403. [DOI] [PubMed] [Google Scholar]
  23. Pauly J. L., Bankert R. B., Repasky E. A. Immunofluorescent patterns of spectrin in lymphocyte cell lines. J Immunol. 1986 Jan;136(1):246–253. [PubMed] [Google Scholar]
  24. Phelps B. M., Williamson P., Schlegel R. A. Lectin-induced rearrangement of an immature hematopoietic cell surface marker. J Cell Physiol. 1982 Mar;110(3):245–248. doi: 10.1002/jcp.1041100304. [DOI] [PubMed] [Google Scholar]
  25. Reisner Y., Linker-Israeli M., Sharon N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol. 1976 Jul;25(1):129–134. doi: 10.1016/0008-8749(76)90103-9. [DOI] [PubMed] [Google Scholar]
  26. Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
  27. Repasky E. A., Symer D. E., Bankert R. B. Spectrin immunofluorescence distinguishes a population of naturally capped lymphocytes in situ. J Cell Biol. 1984 Jul;99(1 Pt 1):350–355. doi: 10.1083/jcb.99.1.350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schlegel R. A., Phelps B. M., Cofer G. P., Williamson P. Enucleation eliminates a differentiation-specific surface marker from normal and leukemic murine erythroid cells. Exp Cell Res. 1982 Jun;139(2):321–328. doi: 10.1016/0014-4827(82)90256-7. [DOI] [PubMed] [Google Scholar]
  29. Schlegel R. A., Phelps B. M., Waggoner A., Terada L., Williamson P. Binding of merocyanine 540 to normal and leukemic erythroid cells. Cell. 1980 Jun;20(2):321–328. doi: 10.1016/0092-8674(80)90618-2. [DOI] [PubMed] [Google Scholar]
  30. Schlegel R. A., Prendergast T. W., Williamson P. Membrane phospholipid asymmetry as a factor in erythrocyte-endothelial cell interactions. J Cell Physiol. 1985 May;123(2):215–218. doi: 10.1002/jcp.1041230210. [DOI] [PubMed] [Google Scholar]
  31. Schlegel R. A., Williamson P. Membrane phospholipid organization as a determinant of blood cell-reticuloendothelial cell interactions. J Cell Physiol. 1987 Aug;132(2):381–384. doi: 10.1002/jcp.1041320229. [DOI] [PubMed] [Google Scholar]
  32. Scollay R., Chen W. F., Shortman K. The functional capabilities of cells leaving the thymus. J Immunol. 1984 Jan;132(1):25–30. [PubMed] [Google Scholar]
  33. Scollay R., Shortman K. Thymocyte subpopulations: an experimental review, including flow cytometric cross-correlations between the major murine thymocyte markers. Thymus. 1983 Sep;5(5-6):245–295. [PubMed] [Google Scholar]
  34. Staufenbiel M., Lazarides E. Ankyrin is fatty acid acylated in erythrocytes. Proc Natl Acad Sci U S A. 1986 Jan;83(2):318–322. doi: 10.1073/pnas.83.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Stokke B. T., Mikkelsen A., Elgsaeter A. The human erythrocyte membrane skeleton may be an ionic gel. I. Membrane mechanochemical properties. Eur Biophys J. 1986;13(4):203–218. doi: 10.1007/BF00260368. [DOI] [PubMed] [Google Scholar]
  36. Stokke B. T., Mikkelsen A., Elgsaeter A. The human erythrocyte membrane skeleton may be an ionic gel. II. Numerical analyses of cell shapes and shape transformations. Eur Biophys J. 1986;13(4):219–233. doi: 10.1007/BF00260369. [DOI] [PubMed] [Google Scholar]
  37. Tanaka K. I., Ohnishi S. Heterogeneity in the fluidity of intact erythrocyte membrane and its homogenization upon hemolysis. Biochim Biophys Acta. 1976 Mar 5;426(2):218–231. doi: 10.1016/0005-2736(76)90333-3. [DOI] [PubMed] [Google Scholar]
  38. Williams J. H., Kuchmak M., Witter R. F. Fatty acids in phospholipids isolated from human red cells. Lipids. 1966 Nov;1(6):391–398. doi: 10.1007/BF02532542. [DOI] [PubMed] [Google Scholar]
  39. Williamson P., Antia R., Schlegel R. A. Maintenance of membrane phospholipid asymmetry. Lipid-cytoskeletal interactions or lipid pump? FEBS Lett. 1987 Jul 27;219(2):316–320. doi: 10.1016/0014-5793(87)80243-0. [DOI] [PubMed] [Google Scholar]
  40. Williamson P., Bateman J., Kozarsky K., Mattocks K., Hermanowicz N., Choe H. R., Schlegel R. A. Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell. 1982 Oct;30(3):725–733. doi: 10.1016/0092-8674(82)90277-x. [DOI] [PubMed] [Google Scholar]
  41. Williamson P., Mattocks K., Schlegel R. A. Merocyanine 540, a fluorescent probe sensitive to lipid packing. Biochim Biophys Acta. 1983 Jul 27;732(2):387–393. doi: 10.1016/0005-2736(83)90055-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES