Abstract
We have used N,N'-1,4-phenylenebismaleimide, a bifunctional sulfhydryl cross-linking reagent, to probe the oligomeric state of actin during the early stages of its polymerization into filaments. We document that one of the first steps in the polymerization of globular monomeric actin (G-actin) under a wide variety of ionic conditions is the dimerization of a significant fraction of the G-actin monomer pool. As polymerization proceeds, the yield of this initial dimer ("lower" dimer with an apparent molecular mass of 86 kD by SDS-PAGE [LD]) is attenuated, while an actin filament dimer ("upper" dimer with an apparent molecular mass of 115 kD by SDS-PAGE [UD] as characterized [Elzinga, M., and J. J. Phelan. 1984. Proc. Natl. Acad. Sci. USA. 81:6599-6602]) is formed. This shift from LD to UD occurs concomitant with formation of filaments as assayed by N-(1-pyrenyl)iodoacetamide fluorescence enhancement and electron microscopy. Isolated cross-linked LD does not form filaments, while isolated cross-linked UD will assemble into filaments indistinguishable from those polymerized from unmodified G-actin under typical filament-forming conditions. The presence of cross-linked LD does not effect the kinetics of polymerization of actin monomer, whereas cross-linked UD shortens the "lag phase" of the polymerization reaction in a concentration-dependent fashion. Several converging lines of evidence suggest that, although accounting for a significant oligomeric species formed during early polymerization, the LD is incompatible with the helical symmetry defining the mature actin filament; however, it could represent the interfilament dimer found in paracrystalline arrays or filament bundles. Furthermore, the LD is compatible with the unit cell structure and symmetry common to various types of crystalline actin arrays (Aebi, U., W. E. Fowler, G. Isenberg, T. D. Pollard, and P. R. Smith. 1981. J. Cell Biol. 91:340-351) and might represent the major structural state in which a mutant beta-actin (Leavitt, J., G. Bushar, T. Kakunaga, H. Hamada, T. Hirakawa, D. Goldman, and C. Merril. 1982. Cell. 28:259-268) is arrested under polymerizing conditions.
Full Text
The Full Text of this article is available as a PDF (4.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aebi U., Fowler W. E., Isenberg G., Pollard T. D., Smith P. R. Crystalline actin sheets: their structure and polymorphism. J Cell Biol. 1981 Nov;91(2 Pt 1):340–351. doi: 10.1083/jcb.91.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aebi U., Millonig R., Salvo H., Engel A. The three-dimensional structure of the actin filament revisited. Ann N Y Acad Sci. 1986;483:100–119. doi: 10.1111/j.1749-6632.1986.tb34502.x. [DOI] [PubMed] [Google Scholar]
- Aebi U., Pollard T. D. A glow discharge unit to render electron microscope grids and other surfaces hydrophilic. J Electron Microsc Tech. 1987 Sep;7(1):29–33. doi: 10.1002/jemt.1060070104. [DOI] [PubMed] [Google Scholar]
- Bender N., Fasold H., Kenmoku A., Middelhoff G., Volk K. E. The selective blocking of the polymerization reaction of striated muscle actin leading to a derivative suitable for crystallization. Modification of Tyr-53 by 5-diazonium-(1H)tetrazole. Eur J Biochem. 1976 Apr 15;64(1):215–218. doi: 10.1111/j.1432-1033.1976.tb10290.x. [DOI] [PubMed] [Google Scholar]
- COLE R. D., STEIN W. H., MOORE S. On the cysteine content of human hemoglobin. J Biol Chem. 1958 Dec;233(6):1359–1363. [PubMed] [Google Scholar]
- Cooper J. A., Buhle E. L., Jr, Walker S. B., Tsong T. Y., Pollard T. D. Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry. 1983 Apr 26;22(9):2193–2202. doi: 10.1021/bi00278a021. [DOI] [PubMed] [Google Scholar]
- Cooper J. A., Walker S. B., Pollard T. D. Pyrene actin: documentation of the validity of a sensitive assay for actin polymerization. J Muscle Res Cell Motil. 1983 Apr;4(2):253–262. doi: 10.1007/BF00712034. [DOI] [PubMed] [Google Scholar]
- Egelman E. H. The structure of F-actin. J Muscle Res Cell Motil. 1985 Apr;6(2):129–151. doi: 10.1007/BF00713056. [DOI] [PubMed] [Google Scholar]
- Elzinga M., Collins J. H. The primary structure of actin from rabbit skeletal muscle. Five cyanogen bromide peptides, including the NH2 and COOH termini. J Biol Chem. 1975 Aug 10;250(15):5897–5905. [PubMed] [Google Scholar]
- Elzinga M., Phelan J. J. F-actin is intermolecularly crosslinked by N,N'-p-phenylenedimaleimide through lysine-191 and cysteine-374. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6599–6602. doi: 10.1073/pnas.81.21.6599. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowler W. E., Aebi U. Preparation of single molecules and supramolecular complexes for high-resolution metal shadowing. J Ultrastruct Res. 1983 Jun;83(3):319–334. doi: 10.1016/s0022-5320(83)90139-9. [DOI] [PubMed] [Google Scholar]
- Frieden C. Actin and tubulin polymerization: the use of kinetic methods to determine mechanism. Annu Rev Biophys Biophys Chem. 1985;14:189–210. doi: 10.1146/annurev.bb.14.060185.001201. [DOI] [PubMed] [Google Scholar]
- Frieden C., Goddette D. W. Polymerization of actin and actin-like systems: evaluation of the time course of polymerization in relation to the mechanism. Biochemistry. 1983 Dec 6;22(25):5836–5843. doi: 10.1021/bi00294a023. [DOI] [PubMed] [Google Scholar]
- Frieden C. Polymerization of actin: mechanism of the Mg2+-induced process at pH 8 and 20 degrees C. Proc Natl Acad Sci U S A. 1983 Nov;80(21):6513–6517. doi: 10.1073/pnas.80.21.6513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gershman L. C., Newman J., Selden L. A., Estes J. E. Bound-cation exchange affects the lag phase in actin polymerization. Biochemistry. 1984 May 8;23(10):2199–2203. doi: 10.1021/bi00305a015. [DOI] [PubMed] [Google Scholar]
- Gilbert H. R., Frieden C. Preparation, purification and properties of a crosslinked trimer of G-actin. Biochem Biophys Res Commun. 1983 Mar 16;111(2):404–408. doi: 10.1016/0006-291x(83)90320-0. [DOI] [PubMed] [Google Scholar]
- Goddette D. W., Uberbacher E. C., Bunick G. J., Frieden C. Formation of actin dimers as studied by small angle neutron scattering. J Biol Chem. 1986 Feb 25;261(6):2605–2609. [PubMed] [Google Scholar]
- Grumet M., Lin S. Reversal of profilin inhibition of actin polymerization in vitro by erythrocyte cytochalasin-binding complexes and cross-linked actin nuclei. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1327–1334. doi: 10.1016/0006-291x(80)90431-3. [DOI] [PubMed] [Google Scholar]
- Knight P., Offer G. p-NN'-phenylenebismaleimide, a specific cross-linking agent for F-actin. Biochem J. 1978 Dec 1;175(3):1023–1032. doi: 10.1042/bj1751023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korn E. D. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol Rev. 1982 Apr;62(2):672–737. doi: 10.1152/physrev.1982.62.2.672. [DOI] [PubMed] [Google Scholar]
- LESLIE J., WILLIAMS D. L., GORIN G. Determination of mercapto groups in proteins with N-ethylmaleimide. Anal Biochem. 1962 Mar;3:257–263. doi: 10.1016/0003-2697(62)90062-3. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Leavitt J., Bushar G., Kakunaga T., Hamada H., Hirakawa T., Goldman D., Merril C. Variations in expression of mutant beta actin accompanying incremental increases in human fibroblast tumorigenicity. Cell. 1982 Feb;28(2):259–268. doi: 10.1016/0092-8674(82)90344-0. [DOI] [PubMed] [Google Scholar]
- Leavitt J., Kakunaga T. Expression of a variant form of actin and additional polypeptide changes following chemical-induced in vitro neoplastic transformation of human fibroblasts. J Biol Chem. 1980 Feb 25;255(4):1650–1661. [PubMed] [Google Scholar]
- Lusty C. J., Fasold H. Characterization of sulfhydryl groups of actin. Biochemistry. 1969 Jul;8(7):2933–2939. doi: 10.1021/bi00835a036. [DOI] [PubMed] [Google Scholar]
- MacLean-Fletcher S., Pollard T. D. Identification of a factor in conventional muscle actin preparations which inhibits actin filament self-association. Biochem Biophys Res Commun. 1980 Sep 16;96(1):18–27. doi: 10.1016/0006-291x(80)91175-4. [DOI] [PubMed] [Google Scholar]
- Matsudaira P., Bordas J., Koch M. H. Synchrotron x-ray diffraction studies of actin structure during polymerization. Proc Natl Acad Sci U S A. 1987 May;84(10):3151–3155. doi: 10.1073/pnas.84.10.3151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mockrin S. C., Korn E. D. Isolation and characterization of covalently cross-linked actin dimer. J Biol Chem. 1981 Aug 10;256(15):8228–8233. [PubMed] [Google Scholar]
- Mockrin S. C., Korn E. D. Kinetics of polymerization and ATP hydrolysis by covalently crosslinked actin dimer. J Biol Chem. 1983 Mar 10;258(5):3215–3221. [PubMed] [Google Scholar]
- Pardee J. D., Spudich J. A. Mechanism of K+-induced actin assembly. J Cell Biol. 1982 Jun;93(3):648–654. doi: 10.1083/jcb.93.3.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rich S. A., Estes J. E. Detection of conformational changes in actin by proteolytic digestion: evidence for a new monomeric species. J Mol Biol. 1976 Jul 15;104(4):777–792. doi: 10.1016/0022-2836(76)90181-9. [DOI] [PubMed] [Google Scholar]
- Rouayrenc J. F., Travers F. The first step in the polymerisation of actin. Eur J Biochem. 1981 May;116(1):73–77. doi: 10.1111/j.1432-1033.1981.tb05302.x. [DOI] [PubMed] [Google Scholar]
- Sato M., Leimbach G., Schwarz W. H., Pollard T. D. Mechanical properties of actin. J Biol Chem. 1985 Jul 15;260(14):8585–8592. [PubMed] [Google Scholar]
- Smith P. R., Fowler W. E., Pollard T. D., Aebi U. Structure of the actin molecule determined from electron micrographs of crystalline actin sheets with a tentative alignment of the molecule in the actin filament. J Mol Biol. 1983 Jul 5;167(3):641–660. doi: 10.1016/s0022-2836(83)80103-x. [DOI] [PubMed] [Google Scholar]
- Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
- Sutoh K. Actin-actin and actin-deoxyribonuclease I contact sites in the actin sequence. Biochemistry. 1984 Apr 24;23(9):1942–1946. doi: 10.1021/bi00304a009. [DOI] [PubMed] [Google Scholar]
- Tobacman L. S., Korn E. D. The kinetics of actin nucleation and polymerization. J Biol Chem. 1983 Mar 10;258(5):3207–3214. [PubMed] [Google Scholar]
- Vandekerckhove J., Leavitt J., Kakunaga T., Weber K. Coexpression of a mutant beta-actin and the two normal beta- and gamma-cytoplasmic actins in a stably transformed human cell line. Cell. 1980 Dec;22(3):893–899. doi: 10.1016/0092-8674(80)90566-8. [DOI] [PubMed] [Google Scholar]
- Wegner A., Engel J. Kinetics of the cooperative association of actin to actin filaments. Biophys Chem. 1975 Jul;3(3):215–225. doi: 10.1016/0301-4622(75)80013-5. [DOI] [PubMed] [Google Scholar]
- Wrigley N. G. The lattice spacing of crystalline catalase as an internal standard of length in electron microscopy. J Ultrastruct Res. 1968 Sep;24(5):454–464. doi: 10.1016/s0022-5320(68)80048-6. [DOI] [PubMed] [Google Scholar]
- dos Remedios C. G., Dickens M. J. Actin microcrystals and tubes formed in the presence of gadolinium ions. Nature. 1978 Dec 14;276(5689):731–733. doi: 10.1038/276731a0. [DOI] [PubMed] [Google Scholar]
