Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1988 Mar 1;106(3):747–760. doi: 10.1083/jcb.106.3.747

Contact formation during fibroblast locomotion: involvement of membrane ruffles and microtubules

PMCID: PMC2115107  PMID: 3126193

Abstract

We have correlated the motility of the leading edge of fibroblasts, monitored by phase-contrast cinematography, with the relative distributions of several cytoskeletal elements (vinculin, tubulin, and actin) as well as with the contact patterns determined by interference reflection microscopy. This analysis has revealed the involvement of both ruffles and microspikes, as well as microtubules in the initiation of focal contact formation. Nascent vinculin sites within the leading edge or at its base, taken as primordial cell-substrate contacts, were invariably colocalized with sites that showed a history of transient, prolonged, or cyclic ruffling activity. Extended microspike structures, often preceded the formation of ruffles. Immunofluorescent labeling indicated that some of these primordial contacts were in close apposition to the ends of microtubules that penetrated into the leading edge. By fluorescence and electron microscopy short bundles of actin filaments found at the base of the leading edge were identified as presumptive, primordial contacts. It is concluded that ruffles and microspikes, either independently or in combination, initiate and mark the sites for future contact. Plaque proteins then accumulate (within 10-30 s) at the contract site and, beneath ruffles, induce localized bundling of actin filaments. We propose that all primordial contacts support traction for leading edge protrusion but that only some persist long enough to nucleate stress fiber assembly. Microtubules are postulated as the elements that select, stabilize, and potentiate the formation of these latter, long-lived contacts.

Full Text

The Full Text of this article is available as a PDF (8.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABERCROMBIE M., AMBROSE E. J. Interference microscope studies of cell contacts in tissue culture. Exp Cell Res. 1958 Oct;15(2):332–345. doi: 10.1016/0014-4827(58)90034-x. [DOI] [PubMed] [Google Scholar]
  2. Abercrombie M., Dunn G. A., Heath J. P. The shape and movement of fibroblasts in culture. Soc Gen Physiol Ser. 1977;32:57–70. [PubMed] [Google Scholar]
  3. Abercrombie M., Heaysman J. E., Pegrum S. M. The locomotion of fibroblasts in culture. I. Movements of the leading edge. Exp Cell Res. 1970 Mar;59(3):393–398. doi: 10.1016/0014-4827(70)90646-4. [DOI] [PubMed] [Google Scholar]
  4. Albrecht-Buehler G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell. 1977 Oct;12(2):333–339. doi: 10.1016/0092-8674(77)90109-x. [DOI] [PubMed] [Google Scholar]
  5. Bereiter-Hahn J., Strohmeier R., Kunzenbacher I., Beck K., Vöth M. Locomotion of Xenopus epidermis cells in primary culture. J Cell Sci. 1981 Dec;52:289–311. doi: 10.1242/jcs.52.1.289. [DOI] [PubMed] [Google Scholar]
  6. Bretscher A., Weber K. Fimbrin, a new microfilament-associated protein present in microvilli and other cell surface structures. J Cell Biol. 1980 Jul;86(1):335–340. doi: 10.1083/jcb.86.1.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buckley I. K. Subcellular motility: a correlated light and electron microscopic study using cultured cells. Tissue Cell. 1974;6(1):1–20. doi: 10.1016/0040-8166(74)90019-6. [DOI] [PubMed] [Google Scholar]
  8. Burridge K., Connell L. Talin: a cytoskeletal component concentrated in adhesion plaques and other sites of actin-membrane interaction. Cell Motil. 1983;3(5-6):405–417. doi: 10.1002/cm.970030509. [DOI] [PubMed] [Google Scholar]
  9. Carter S. B. Effects of cytochalasins on mammalian cells. Nature. 1967 Jan 21;213(5073):261–264. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
  10. Chen W. T. Mechanism of retraction of the trailing edge during fibroblast movement. J Cell Biol. 1981 Jul;90(1):187–200. doi: 10.1083/jcb.90.1.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cooper M. S., Schliwa M. Motility of cultured fish epidermal cells in the presence and absence of direct current electric fields. J Cell Biol. 1986 Apr;102(4):1384–1399. doi: 10.1083/jcb.102.4.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Couchman J. R., Rees D. A. The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J Cell Sci. 1979 Oct;39:149–165. doi: 10.1242/jcs.39.1.149. [DOI] [PubMed] [Google Scholar]
  13. Domnina L. V., Gelfand V. I., Ivanova O. Y., Leonova E. V., Pletjushkina O. Y., Vasiliev J. M., Gelfand I. M. Effects of small doses of cytochalasins on fibroblasts: preferential changes of active edges and focal contacts. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7754–7757. doi: 10.1073/pnas.79.24.7754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Domnina L. V., Rovensky J. A., Vasiliev J. M., Gelfand I. M. Effect of microtubule-destroying drugs on the spreading and shape of cultured epithelial cells. J Cell Sci. 1985 Mar;74:267–282. doi: 10.1242/jcs.74.1.267. [DOI] [PubMed] [Google Scholar]
  15. Dvorak J. A., Stotler W. F. A controlled-environment culture system for high resolution light microscopy. Exp Cell Res. 1971 Sep;68(1):144–148. doi: 10.1016/0014-4827(71)90596-9. [DOI] [PubMed] [Google Scholar]
  16. Geiger B. A 130K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell. 1979 Sep;18(1):193–205. doi: 10.1016/0092-8674(79)90368-4. [DOI] [PubMed] [Google Scholar]
  17. Geiger B., Avnur Z., Kreis T. E., Schlessinger J. The dynamics of cytoskeletal organization in areas of cell contact. Cell Muscle Motil. 1984;5:195–234. doi: 10.1007/978-1-4684-4592-3_5. [DOI] [PubMed] [Google Scholar]
  18. Geiger B., Avnur Z., Rinnerthaler G., Hinssen H., Small V. J. Microfilament-organizing centers in areas of cell contact: cytoskeletal interactions during cell attachment and locomotion. J Cell Biol. 1984 Jul;99(1 Pt 2):83s–91s. doi: 10.1083/jcb.99.1.83s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Geiger B. Involvement of vinculin in contact-induced cytoskeletal interactions. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):671–682. doi: 10.1101/sqb.1982.046.01.063. [DOI] [PubMed] [Google Scholar]
  20. Geiger B. Membrane-cytoskeleton interaction. Biochim Biophys Acta. 1983 Aug 11;737(3-4):305–341. doi: 10.1016/0304-4157(83)90005-9. [DOI] [PubMed] [Google Scholar]
  21. Haemmerli G., Sträuli P., Ploem J. S. Cell-to-substrate adhesions during spreading and locomotin of carcinoma cells. A study by mcrocinematography and reflection contrast microscopy. Exp Cell Res. 1980 Aug;128(2):249–256. doi: 10.1016/0014-4827(80)90061-0. [DOI] [PubMed] [Google Scholar]
  22. Heath J. P., Dunn G. A. Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J Cell Sci. 1978 Feb;29:197–212. doi: 10.1242/jcs.29.1.197. [DOI] [PubMed] [Google Scholar]
  23. Heggeness M. H., Wang K., Singer S. J. Intracellular distributions of mechanochemical proteins in cultured fibroblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3883–3887. doi: 10.1073/pnas.74.9.3883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Herman I. M., Crisona N. J., Pollard T. D. Relation between cell activity and the distribution of cytoplasmic actin and myosin. J Cell Biol. 1981 Jul;90(1):84–91. doi: 10.1083/jcb.90.1.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Horwitz A., Duggan K., Buck C., Beckerle M. C., Burridge K. Interaction of plasma membrane fibronectin receptor with talin--a transmembrane linkage. Nature. 1986 Apr 10;320(6062):531–533. doi: 10.1038/320531a0. [DOI] [PubMed] [Google Scholar]
  26. Hynes R. O. Integrins: a family of cell surface receptors. Cell. 1987 Feb 27;48(4):549–554. doi: 10.1016/0092-8674(87)90233-9. [DOI] [PubMed] [Google Scholar]
  27. Höglund A. S., Karlsson R., Arro E., Fredriksson B. A., Lindberg U. Visualization of the peripheral weave of microfilaments in glia cells. J Muscle Res Cell Motil. 1980 Jun;1(2):127–146. doi: 10.1007/BF00711795. [DOI] [PubMed] [Google Scholar]
  28. Isenberg G., Rathke P. C., Hülsmann N., Franke W. W., Wohlfarth-Bottermann K. E. Cytoplasmic actomyosin fibrils in tissue culture cells: direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tissue Res. 1976 Feb 27;166(4):427–443. doi: 10.1007/BF00225909. [DOI] [PubMed] [Google Scholar]
  29. Izzard C. S., Lochner L. R. Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci. 1976 Jun;21(1):129–159. doi: 10.1242/jcs.21.1.129. [DOI] [PubMed] [Google Scholar]
  30. Izzard C. S., Lochner L. R. Formation of cell-to-substrate contacts during fibroblast motility: an interference-reflexion study. J Cell Sci. 1980 Apr;42:81–116. doi: 10.1242/jcs.42.1.81. [DOI] [PubMed] [Google Scholar]
  31. Kolega J. Effects of mechanical tension on protrusive activity and microfilament and intermediate filament organization in an epidermal epithelium moving in culture. J Cell Biol. 1986 Apr;102(4):1400–1411. doi: 10.1083/jcb.102.4.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Kreis T. E., Geiger B., Schlessinger J. Mobility of microinjected rhodamine actin within living chicken gizzard cells determined by fluorescence photobleaching recovery. Cell. 1982 Jul;29(3):835–845. doi: 10.1016/0092-8674(82)90445-7. [DOI] [PubMed] [Google Scholar]
  33. Lazarides E. Two general classes of cytoplasmic actin filaments in tissue culture cells: the role of tropomyosin. J Supramol Struct. 1976;5(4):531(383)–563(415). doi: 10.1002/jss.400050410. [DOI] [PubMed] [Google Scholar]
  34. Lloyd C. W., Smith C. G., Woods A., Rees D. A. Mechanisms of cellular adhesion. II. The interplay between adhesion, the cytoskeleton and morphology in substrate-attached cells. Exp Cell Res. 1977 Dec;110(2):427–437. doi: 10.1016/0014-4827(77)90309-3. [DOI] [PubMed] [Google Scholar]
  35. Mangeat P., Burridge K. Actin-membrane interaction in fibroblasts: what proteins are involved in this association? J Cell Biol. 1984 Jul;99(1 Pt 2):95s–103s. doi: 10.1083/jcb.99.1.95s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Neyfakh A. A., Jr, Tint I. S., Svitkina T. M., Bershadsky A. D., Gelfand V. I. Visualization of cellular focal contacts using a monoclonal antibody to 80 kD serum protein adsorbed on the substratum. Exp Cell Res. 1983 Dec;149(2):387–396. doi: 10.1016/0014-4827(83)90351-8. [DOI] [PubMed] [Google Scholar]
  37. Pagh K. I., Vergara J. A., Adelman M. R. Improved negative staining of microfilament arrangements in detergent-extracted Physarum amoeboflagellates. Exp Cell Res. 1985 Jan;156(1):287–293. doi: 10.1016/0014-4827(85)90284-8. [DOI] [PubMed] [Google Scholar]
  38. Schulze E., Kirschner M. Dynamic and stable populations of microtubules in cells. J Cell Biol. 1987 Feb;104(2):277–288. doi: 10.1083/jcb.104.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Singer S. J., Kupfer A. The directed migration of eukaryotic cells. Annu Rev Cell Biol. 1986;2:337–365. doi: 10.1146/annurev.cb.02.110186.002005. [DOI] [PubMed] [Google Scholar]
  40. Small J. V., Celis J. E. Filament arrangements in negatively stained cultured cells: the organization of actin. Cytobiologie. 1978 Feb;16(2):308–325. [PubMed] [Google Scholar]
  41. Small J. V., Isenberg G., Celis J. E. Polarity of actin at the leading edge of cultured cells. Nature. 1978 Apr 13;272(5654):638–639. doi: 10.1038/272638a0. [DOI] [PubMed] [Google Scholar]
  42. Small J. V. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks. J Cell Biol. 1981 Dec;91(3 Pt 1):695–705. doi: 10.1083/jcb.91.3.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Small J. V., Rinnerthaler G., Hinssen H. Organization of actin meshworks in cultured cells: the leading edge. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):599–611. doi: 10.1101/sqb.1982.046.01.056. [DOI] [PubMed] [Google Scholar]
  44. Spooner B. S., Yamada K. M., Wessells N. K. Microfilaments and cell locomotion. J Cell Biol. 1971 Jun;49(3):595–613. doi: 10.1083/jcb.49.3.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Vasiliev J. M., Gelfand I. M., Domnina L. V., Ivanova O. Y., Komm S. G., Olshevskaja L. V. Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol. 1970 Nov;24(3):625–640. [PubMed] [Google Scholar]
  46. Vasiliev J. M. Spreading of non-transformed and transformed cells. Biochim Biophys Acta. 1985;780(1):21–65. doi: 10.1016/0304-419x(84)90006-4. [DOI] [PubMed] [Google Scholar]
  47. Wang Y. L. Reorganization of actin filament bundles in living fibroblasts. J Cell Biol. 1984 Oct;99(4 Pt 1):1478–1485. doi: 10.1083/jcb.99.4.1478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wehland J., Osborn M., Weber K. Cell-to-substratum contacts in living cells: a direct correlation between interference-reflexion and indirect-immunofluorescence microscopy using antibodies against actin and alpha-actinin. J Cell Sci. 1979 Jun;37:257–273. doi: 10.1242/jcs.37.1.257. [DOI] [PubMed] [Google Scholar]
  49. Wessells N. K., Spooner B. S., Ash J. F., Bradley M. O., Luduena M. A., Taylor E. L., Wrenn J. T., Yamada K. Microfilaments in cellular and developmental processes. Science. 1971 Jan 15;171(3967):135–143. doi: 10.1126/science.171.3967.135. [DOI] [PubMed] [Google Scholar]
  50. Wessells N. K., Spooner B. S., Ludueña M. A. Surface movements, microfilaments and cell locomotion. Ciba Found Symp. 1973;14:53–82. doi: 10.1002/9780470719978.ch4. [DOI] [PubMed] [Google Scholar]
  51. Yamashiro-Matsumura S., Matsumura F. Intracellular localization of the 55-kD actin-bundling protein in cultured cells: spatial relationships with actin, alpha-actinin, tropomyosin, and fimbrin. J Cell Biol. 1986 Aug;103(2):631–640. doi: 10.1083/jcb.103.2.631. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES