Abstract
Murine mAbs were produced against purified microvillus membranes of rat colonocytes in order to establish a marker protein for this membrane. The majority of antibodies binding to the colonic microvillus membrane recognized a single protein with a mean apparent Mr of 120 kD in both proximal and distal colon samples. The antigen is membrane bound as probed by phase-partitioning studies using Triton X-114 and by the sodium carbonate extraction procedure and is extensively glycosylated as assessed by endoglycosidase F digestion. Localization studies in adult rats by light and electron microscopy revealed the microvillus membrane of surface colonocytes as the principal site of the immunoreaction. The antigen was not detectable in kidney or liver by immunoprecipitation but was present in the small intestine, where it was predominantly confined to the apical membrane of crypt cells and much less to the microvillus membrane of differentiated enterocytes. During fetal development, the antigen appears first in the colon at day 15 and 1-2 d later in the small intestine. In both segments, it initially covers the whole luminal surface but an adult-like localization pattern develops soon after birth. The antibodies were also used to develop a radiometric assay for the quantification of the antigen in subcellular fractions of colonocytes in order to assess the validity of a previously developed method for the purification of colonic brush-border membranes (Stieger, B., A. Marxer, and H.P. Hauri. 1986. J. Membr. Biol. 91:19-31.). The results suggest that we have identified a valuable marker glycoprotein for the colonic microvillus membrane, which in adult rats may also serve as a marker for early differentiation of enterocyte progenitor cells in small-intestinal crypt cells.
Full Text
The Full Text of this article is available as a PDF (3.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armbruster B. L., Carlemalm E., Chiovetti R., Garavito R. M., Hobot J. A., Kellenberger E., Villiger W. Specimen preparation for electron microscopy using low temperature embedding resins. J Microsc. 1982 Apr;126(Pt 1):77–85. doi: 10.1111/j.1365-2818.1982.tb00358.x. [DOI] [PubMed] [Google Scholar]
- Binder H. J., Stange G., Murer H., Stieger B., Hauri H. P. Sodium-proton exchange in colon brush-border membranes. Am J Physiol. 1986 Sep;251(3 Pt 1):G382–G390. doi: 10.1152/ajpgi.1986.251.3.G382. [DOI] [PubMed] [Google Scholar]
- Bordier C. Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem. 1981 Feb 25;256(4):1604–1607. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Brasitus T. A., Keresztes R. S. Protein-lipid interactions in antipodal plasma membranes of rat colonocytes. Biochim Biophys Acta. 1984 Jun 27;773(2):290–300. doi: 10.1016/0005-2736(84)90093-2. [DOI] [PubMed] [Google Scholar]
- Dahlqvist A. Assay of intestinal disaccharidases. Anal Biochem. 1968 Jan;22(1):99–107. doi: 10.1016/0003-2697(68)90263-7. [DOI] [PubMed] [Google Scholar]
- De Duve C. Principles of tissue fractionation. J Theor Biol. 1964 Jan;6(1):33–59. doi: 10.1016/0022-5193(64)90065-7. [DOI] [PubMed] [Google Scholar]
- Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70(A):419–439. doi: 10.1016/s0076-6879(80)70067-8. [DOI] [PubMed] [Google Scholar]
- Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
- Foster E. S., Hayslett J. P., Binder H. J. Mechanism of active potassium absorption and secretion in the rat colon. Am J Physiol. 1984 May;246(5 Pt 1):G611–G617. doi: 10.1152/ajpgi.1984.246.5.G611. [DOI] [PubMed] [Google Scholar]
- Fransen J. A., Ginsel L. A., Hauri H. P., Sterchi E., Blok J. Immuno-electronmicroscopical localization of a microvillus membrane disaccharidase in the human small-intestinal epithelium with monoclonal antibodies. Eur J Cell Biol. 1985 Jul;38(1):6–15. [PubMed] [Google Scholar]
- Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galfre G., Howe S. C., Milstein C., Butcher G. W., Howard J. C. Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature. 1977 Apr 7;266(5602):550–552. doi: 10.1038/266550a0. [DOI] [PubMed] [Google Scholar]
- Gorvel J. P., Rigal A., Bernadac A., Maroux S. Further characterization of an early expressed glycoprotein of the rabbit small intestinal brush border. Its interaction with some hydrolases. Eur J Biochem. 1986 Sep 15;159(3):499–505. doi: 10.1111/j.1432-1033.1986.tb09914.x. [DOI] [PubMed] [Google Scholar]
- Gorvel J. P., Rigal A., Olive D., Mawas C., Maroux S. Identification of an early expressed marker of the luminal membrane of rabbit small intestinal columnar cells. Presence of a homologous antigen in kidney proximal tubules and glomeruli. Biol Cell. 1986;56(2):121–126. doi: 10.1111/j.1768-322x.1986.tb00449.x. [DOI] [PubMed] [Google Scholar]
- Gustin M. C., Goodman D. B. Isolation of brush-border membrane from the rabbit descending colon epithelium. Partial characterization of a unique K+-activated ATPase. J Biol Chem. 1981 Oct 25;256(20):10651–10656. [PubMed] [Google Scholar]
- HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
- Hauri H. P., Bucher K. Immunoblotting with monoclonal antibodies: importance of the blocking solution. Anal Biochem. 1986 Dec;159(2):386–389. doi: 10.1016/0003-2697(86)90357-x. [DOI] [PubMed] [Google Scholar]
- Hauri H. P., Roth J., Sterchi E. E., Lentze M. J. Transport to cell surface of intestinal sucrase-isomaltase is blocked in the Golgi apparatus in a patient with congenital sucrase-isomaltase deficiency. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4423–4427. doi: 10.1073/pnas.82.13.4423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hauri H. P., Sterchi E. E., Bienz D., Fransen J. A., Marxer A. Expression and intracellular transport of microvillus membrane hydrolases in human intestinal epithelial cells. J Cell Biol. 1985 Sep;101(3):838–851. doi: 10.1083/jcb.101.3.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lorenzsonn V., Korsmo H., Olsen W. A. Localization of sucrase-isomaltase in the rat enterocyte. Gastroenterology. 1987 Jan;92(1):98–105. doi: 10.1016/0016-5085(87)90844-4. [DOI] [PubMed] [Google Scholar]
- Luciano L., Reale E., Rechkemmer G., von Engelhardt W. Structure of zonulae occludentes and the permeability of the epithelium to short-chain fatty acids in the proximal and the distal colon of guinea pig. J Membr Biol. 1984;82(2):145–156. doi: 10.1007/BF01868939. [DOI] [PubMed] [Google Scholar]
- Lucocq J. M., Baschong W. Preparation of protein colloidal gold complexes in the presence of commonly used buffers. Eur J Cell Biol. 1986 Dec;42(2):332–337. [PubMed] [Google Scholar]
- Merril C. R., Goldman D., Van Keuren M. L. Gel protein stains: silver stain. Methods Enzymol. 1984;104:441–447. doi: 10.1016/s0076-6879(84)04111-2. [DOI] [PubMed] [Google Scholar]
- Quaroni A. Fetal characteristics of small intestinal crypt cells. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1723–1727. doi: 10.1073/pnas.83.6.1723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quaroni A., Isselbacher K. J. Cytotoxic effects and metabolism of benzo[a]pyrene and 7,12-dimethylbenz[a]anthracene in duodenal and ileal epithelial cell cultures. J Natl Cancer Inst. 1981 Dec;67(6):1353–1362. [PubMed] [Google Scholar]
- Quaroni A., Wands J., Trelstad R. L., Isselbacher K. J. Epithelioid cell cultures from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol. 1979 Feb;80(2):248–265. doi: 10.1083/jcb.80.2.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ritchie D. G., Nickerson J. M., Fuller G. M. Two simple programs for the analysis of data from enzyme-linked immunosorbent assays (ELISA) on a programmable desk-top calculator. Methods Enzymol. 1983;92:577–588. doi: 10.1016/0076-6879(83)92045-1. [DOI] [PubMed] [Google Scholar]
- Roth J., Bendayan M., Carlemalm E., Villiger W., Garavito M. Enhancement of structural preservation and immunocytochemical staining in low temperature embedded pancreatic tissue. J Histochem Cytochem. 1981 May;29(5):663–671. doi: 10.1177/29.5.6166664. [DOI] [PubMed] [Google Scholar]
- Roth J., Taatjes D. J., Lucocq J. M., Weinstein J., Paulson J. C. Demonstration of an extensive trans-tubular network continuous with the Golgi apparatus stack that may function in glycosylation. Cell. 1985 Nov;43(1):287–295. doi: 10.1016/0092-8674(85)90034-0. [DOI] [PubMed] [Google Scholar]
- Rothwell C. E., Khazaeli M. B., Bernstein I. A. Radiometric assay for direct quantitation of rat liver cytochrome P-450b using monoclonal antibodies. Anal Biochem. 1985 Aug 15;149(1):197–201. doi: 10.1016/0003-2697(85)90495-6. [DOI] [PubMed] [Google Scholar]
- Schmitz J., Preiser H., Maestracci D., Ghosh B. K., Cerda J. J., Crane R. K. Purification of the human intestinal brush border membrane. Biochim Biophys Acta. 1973 Sep 27;323(1):98–112. doi: 10.1016/0005-2736(73)90434-3. [DOI] [PubMed] [Google Scholar]
- Schultz S. G. A cellular model for active sodium absorption by mammalian colon. Annu Rev Physiol. 1984;46:435–451. doi: 10.1146/annurev.ph.46.030184.002251. [DOI] [PubMed] [Google Scholar]
- Slot J. W., Geuze H. J. A new method of preparing gold probes for multiple-labeling cytochemistry. Eur J Cell Biol. 1985 Jul;38(1):87–93. [PubMed] [Google Scholar]
- Smith P. L., McCabe R. D. Mechanism and regulation of transcellular potassium transport by the colon. Am J Physiol. 1984 Nov;247(5 Pt 1):G445–G456. doi: 10.1152/ajpgi.1984.247.5.G445. [DOI] [PubMed] [Google Scholar]
- Stieger B., Marxer A., Hauri H. P. Isolation of brush-border membranes from rat and rabbit colonocytes: is alkaline phosphatase a marker enzyme? J Membr Biol. 1986;91(1):19–31. doi: 10.1007/BF01870211. [DOI] [PubMed] [Google Scholar]
- Tokuyasu K. T. A study of positive staining of ultrathin frozen sections. J Ultrastruct Res. 1978 Jun;63(3):287–307. doi: 10.1016/s0022-5320(78)80053-7. [DOI] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vengesa P. B., Hopfer U. Cytochemical localization of alkaline phosphatase and Na+-pump sites in adult rat colon. J Histochem Cytochem. 1979 Sep;27(9):1231–1235. doi: 10.1177/27.9.39100. [DOI] [PubMed] [Google Scholar]
- de StGroth S. F., Scheidegger D. Production of monoclonal antibodies: strategy and tactics. J Immunol Methods. 1980;35(1-2):1–21. doi: 10.1016/0022-1759(80)90146-5. [DOI] [PubMed] [Google Scholar]